MASTER TOPICS: Chemistry of advanced materials

SYLLABUS

Course name: Chemical Physics of solid state materials. Lecturers: assist. prof. dr. Mariana Duca and assist. prof. dr. Bogdan Jurca Course duration: 28 hours Laboratory/seminar activity duration: 28 hours Credits: 5 Evaluation form: examination (50% Physical basis; 50% Chemical applications)

Course

Course	Topics of the course	Duration
number		(hours)
1.	Crystalline structure	2
2.	Reciprocal lattice. Bragg law. Brillouin zone	3
3.	Fermi gas of electrons in the lattice. Caloric capacity. Conductivity	3
4.	Energy bands. Bloch functions. Kronig-Penney model	3
5.	Diamagnetism and paramagnetism	3
6.	Measurements in magnetic field.	4
7.	Diffraction measurements theory. Techniques. Structural informations.	4
8.	Solid state reactions. Nucleation. Diffusion. Involved mechanisms.	4
9.	Synthesis of solid state materials. Wet chemistry; soft chemistry.	2

Laboratory/Seminar

Lab.	Topics of the laboratory/seminar activity	Duration
number		(hours)
1.	Laboratory work safety and fire protection	4
	Photoresistance and photodiode. Hall effect	
2.	Feromagnetic materials. Hysteresis loop	4
3.	Calculation of energy bands	2
4.	Types of paramagnetism. Van Vleck and spin paramagnetism	2
5.	Curie law	2
6.	Simetry in crystal lattices. Applications	4
7.	Experimental powder diffraction diagrams. Indexation and simulation.	6
8.	Controlled synthesis of an oxide material.	4