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Abstract. Proof assistants are tools specialized in helping humans prove theo-
rems. What is perhaps less known is that they are also useful as programming
environments. In this short text, I give a flavor of how a proof assistant can help
write more reliable programs (e.g., guaranteed to be terminating or productive)
without requiring the user to write proofs. I also give pointers to the work of
my collaborators and me on improving the programming experience in the proof
assistant Isabelle/HOL

In a typical proof assistant, a user can write commands like:

datatype α list = Nil | Cons α (α list)

length xs = case xs of Nil⇒ 0 | Cons x ys⇒ 1 + length ys

Such commands are familiar to functional programmers, looking like usual recursive
datatype and function defined in a functional programming language such as ML or
Haskell. However, a proof assistant has a different take at such commands.

1 Theorem-Based Programming

For example, higher-order logic (HOL), the underlying logic of many successful proof as-
sistants,3 supports natively neither datatypes nor recursion—but only plain, nonrecursive
definitions.

So how are such recursive definitions bootstrapped? By automatically performing
several nonrecursive definitions and proving several theorems. Thus, when the user
writes a datatype command like the above, the system does the following in response:

– Starts with the functor (α, β) F = unit + α×β
– Builds its least fixpoint (initial algebra) α list ' (α, α list) F
– Splits the fixpoint bijection into constructors Nil and Cons
– Proves the familiar properties: constructor injectivity, constructor-based induction

and recursion principles, etc.

3 These include HOL4 [25], HOL Light [14], ProofPower/HOL [2], HOL Zero [1], as well as my
favorite, Isabelle/HOL [18, 19]—which actually implements a slight extension of HOL [16, 17],
enabling Haskell-style type classes [20].



All this happens automatically, in the background, without the user needing to
know. In Isabelle/HOL, 22000 lines of ML implement this functionality, covering both
inductive and coinductiove datatypes (the latter also known as codatatypes).

Moreover, in response to a recursive function specification like the above for length,
the system reacts as follows:

– Analyzes the call graph and proves that it is well founded
– Defines length using a well-founded recursion combinator
– Proves the above recursive equation as a theorem

In short, everything is reduced to nonrecursive definitions in HOL. I call such a
programming model theorem-based programming, because the reduction proceeds by
proving theorems.

A benefit of theorem-based programming is the availability of a significant amount
of structure and static information on the defined types and programs. In particular, users
obtain for free many useful polytypic operations on datatypes, such as map functions
and “forall” predicates, as well as termination or productivity knowledge about their
programs. This knowledge base is highly flexible and extendable, especially if the user
is willing to do not only programming, but also a bit of proving. However, it should be
insisted that a proof assistant is already useful to “ordinary” programmers, as it provides
many facts automatically.

2 Theorems Versus Axioms

But why should one prefer theorem-based to the lighter4 axiom-based programming?
For example, when the user writes a recursive equation such as that of list, why not
simply accept it as a new axiom of the system, say, after some syntactic checks, e.g.,
that all recursive calls are guarded? Why go further and establish well-foundedness of
the call graph and then produce a nonrecursive definition in the background? There
are two reasons. First, because the axiomatic approach is risky: Getting the checks
slightly wrong leads to inconsistencies in the logic. Second, and equally importantly,
because the axiomatic approach is inflexible: When the syntactic checks fail, the users
cannot do anything, even if they know their recursion is correct. Consider the following
specification of quicksort:

qsort (Cons x xs) = qsort (filter (<x) xs) ++ [x] ++ qsort (filter (≥x) xs)

Without knowing the semantics of filter, a typical syntactic check must reject this
definition—for all we know, filter could increase the size of its input list. In theorem-based
programming, the system can ask the user for a hint or employ an existing fact about
filter from the knowledge base, and then accept the definition.

In summary, theorem-based programming is the safest way to achieve reliable and
flexible executable specifications in a proof assistant. Existing proof assistant tools realize
these desiderata to different degrees—as discussed in the excellent recent survey [12],
covering some of the most important players in the field: Agda [11], Coq [3], and the
HOL-based proof assistants.

4 That is, lighter for the proof assistant designers and implementors, not for the end users.
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3 Achieving Flexibility

The HOL-based proof assistants are famously reliable thanks to reducing everything to
a minimalistic logic kernel. In Isabelle/HOL [18, 19], we have recently also achieved
significant flexibility:

– The defined datatypes can be inductive or coinductive [26], free or permutative
[13, 22–24], and can be freely mixed and nested [5, 7, 9, 10].

– The functions defined on these datatypes can flexibly recurse [15], corecurse [4, 8],
and even mix recursion and corecursion [4, 8].

These features required state-of-the art category theory, as well as mechanisms for
customizing the abstract results to concrete cases—our motto was “employ category
theory in the background, but do not expose the end user to it.” There are two concepts
behind this flexibility (achieved without compromising safety):

– rich datatypes, stored not as mere “types,” i.e., flat collections of elements, but as
functors and relators with additional structure and theorems [26] and with controlled
size [6]—this enables modular constructions, preserving natural abstraction barriers

– intelligent (co)recursors, learning from their interaction with the users—this enables
the system to become increasingly permissive with its allowed (co)recursion patterns
[4, 8] and associated (co)induction principles [4, 8, 21]

4 Conclusion

Proof assistants are smart programming languages, in that they analyze each new user-
specified datatype and program and integrate them in a knowledge base, fueled by
proving theorems. This knowledge base offers substantial services to the programmer: It
guarantees that programs terminate or are productive, and automatically defines many
useful functions for datatypes. A wealth of additional static knowledge is made available
to programmers who are willing to reach out and prove some basic properties of their
programs. I wholeheartedly invite programmers to try Isabelle/HOL, which is one of the
smartest (and friendliest) proof assistants ever to walk the earth.
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