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Răzvan Diaconescu

Simion Stoilow Institute of Mathematics of the Romanian Academy

FROM 2017



Part I

Conceptual Blending: from
Fauconnier and Turner to

Goguen



Concepts

I Concepts are basic feature of the functioning of human
mind

1. acquired (through culture),
2. innate (e.g. as the most subtle sense of “I”)

(The subject of our study is the former category.)
I Systematic study of concept fabrication within cognitive

sciences.
I Significance in computational creativity, new area of

artificial intelligence. Machine fabrication of concepts
seen as crucial.



Fauconnier and Turner

Seminal work of Fauconnier and Turner (cognitive scientists –
around year 2000) on systematic fabrication of (new) concepts
through so-called blending.



Goguen’s framework

He proposed a general mathematical framework for conceptual
blending:

I based upon ideas from his own work on algebraic
semiotics;

I based on category theory;
I concepts are represented as logical theories;
I he developed several examples using the OBJ formal

notation (hence equational logic representation of
concepts).



The COINVENT project (2014–2016)

I big European project (FP7);

I aimed to develop a computationally feasible,
cognitively-inspired formal model of concept creation,
drawing on Fauconnier and Turner’s theory of conceptual
blending;

I built around Goguen’s formal framework;

I concrete applications to mathematics, music, sociology,
etc.



Generic scheme for conceptual blending

Blendoid

Concept 1

;;

Concept 2

cc

Generic concept

cc ;;

OO



From math: rings as a blending

Ring : (R,+,∗,0,1)

Comm. Group : (R,+,0)

99

Monoid : (R,∗,1)

ee

Set : (R)

ee 99

OO

Note: this is not a co-limit of theories as distributivity has to be
added.



Another example from math (by Alan Smail)

Integers

Naturals

⊆

;;

Bijection and its inverse

succesor and predecesor

cc

Endofunction

succesor

cc

⊆

;;

OO



Partiality sneaks in

If taking colimit of logical theory morphisms then the axiom
0 6= succ(x) leads to inconsistency; hence needs to be removed.

Consequently the translation Naturals -> Integers ought to be
partial.

Conclusion: the arrows in the blending diagram may represent
partial rather than total translations!

However, I think this is a non-example of blending (this will be
clarified later on).



Now a classic one: the houseboat

As land cannot be mapped (to water), there is a partiality in the
upper-right mapping, and commutativity of the left triangle is lost.



Goguen’s 3
2-categorical approach

The abstract approach to partial mappings requires
order-enriched category theory, i.e. hom-sets are posets, etc. (a
diluted variant of 2-category theory).

Thus the blending diagram reads as a lax co-cone (which means
non-strict commutativity):

Blendoid

Concept 1

99

v Concept 2

ee

w

Generic concept

ee 99
d

OO



Shortcomings of this approach

Lax co-cones are too many, and apparently no type of
3
2 -co-limit is able to capture adequately the blending diagrams
(Goguen proposal of “3

2 -pushouts” has problems).

But more severely, this has no proper semantic dimension given
by a model theory (including also a satisfaction relation).

Consequently no way to properly address crucial issues such as
consistency of blending/merge.

A refinement of the 3
2 -categorical approach to an

institution-theoretic one seems thus unavoidable...



Part II

3
2-institutions: refining institution

theory with implicit partiality



What is Institution Theory?
I A very general mathematical study of formal logical

systems, with emphasis on semantics
I started in the 80’s by Joseph Goguen and Rod Burstall.



What is Institution Theory? (...continued)

I Based upon a mathematical definition for the informal
notion of logical system, called institution.

I Accommodates not only well established logical systems
but also very unconventional ones and moreover it has
served and it may serve as a template for defining new
ones.

I Approaches logic from a relativistic, non-substantialist
perspective, quite different from the common reading of
logic.



What is Institution Theory? (...continued again)

I Not opposed to the established logic tradition, since it
rather includes it from a higher abstraction level.

I Real difference made at the level of methodology,
top-down (in the case of institution theory) versus
bottom-up (in the case of conventional logic tradition).

I Strong impact in computer science and logic over more
than 3 decades. Very big literature.

I Ever growing interest in institution theory by computer
scientists and (recently) logicians.



The concept of Institution:
the categorical structure

‘Logical system’ as mathematical object:

I = (Sig,Sen,Mod, |=) :

Set

Sig

Mod ,,

Sen
22

(
|=Σ⊆ |Mod(Σ)|×Sen(Σ)

)
Σ∈|Sig|

CATop



The concept of Institution:
the Satisfaction Condition

Σ

ϕ

��

ρ ∈ Sen(Σ) Mod(ϕ)(M′) |=Σ ρ

m

Σ′ M′ ∈ |Mod(Σ′)| M′ |=Σ′ Sen(ϕ)(ρ)

I Expresses the invariance of truth with respect to change of
notation;

I inspired from Barwise-Feferman’s abstract model theory.



Application domains
I Foundations for logic-based computing/specification:

I Sets a standard style for developing new formal specification
languages.

I A great part of modern formal specification theory has been
developed at the general level of abstract institutions, including
both classical and modern things (heterogeneous, etc.).

I Exported also to areas such as logic programming, ontologies,
etc.

I Redesign of in-depth model theory at the level of abstract
institutions:

I Important difficult new results obtained in model theory,
I novel approaches have been opened,
I proper support to powerful unconventional methods (e.g.

logic-by-translation), etc.

R. Diaconescu.
Institution-independent Model Theory.
Springer Basel (2008).



Can institutions be used as such as foundations
for blending?

NO,
institutions (in their ordinary form) are no good

because they cannot accomodate the emblematic aspect of
partiality of theory morphisms,

which means
I the sentence translations Sen(ϕ) ought to be partial rather

than total,
I the model reducts Mod(ϕ) ought to be a blend between

functors and relations rather than functors
(since Mod(ϕ)(M′) yields a set of models – possibly
empty! – rather than a single model), and

I so on...



A 3
2-dimensional extension of institution theory

I Sig is a 3
2 -category;

I Sen(ϕ) are partial functions and
ϕ ≤ θ implies Sen(ϕ)⊆ Sen(θ);

I Mod(ϕ) are lax functors Mod(Σ′)→PMod(Σ):
I Mod(ϕ)(h1);Mod(ϕ)(h2)⊆Mod(ϕ)(h1;h2);

I if ϕ ≤ θ then Mod(θ)(M′)⊆Mod(ϕ)(M′);

I Mod(ϕ)(Mod(ϕ ′)(M′′))⊆Mod(ϕ;ϕ ′)(M′′).

I Satisfaction Condition:

M′ |=Σ′ Sen(ϕ)(ρ) if and only if M |=Σ ρ

for each M′ ∈ |Mod(Σ′)|, M ∈ |Mod(ϕ)(M′)| and
ρ ∈ dom(Sen(ϕ)).
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3
2-institutions:

I a 3
2 -category of signatures Sig,

I a 3
2 -functor Sen: Sig→ Pfn,

called the sentence functor,

I a lax 3
2 -functor Mod: (Sig)op→ 3

2(CATP),
called the model functor,

I for each signature Σ ∈ |Sig| a satisfaction relation
|=Σ ⊆ |Mod(Σ)|×Sen(Σ)

I such that the above Satisfaction Condition holds.



Instances of 3
2-institutions

I Each ordinary (strict) institution, when Sig regarded as
having the trivial 3

2 -structure;

I In general, each concrete institution I determines a
3
2 -institution 3

2 -I by considering the ‘partial morphisms’
over Sig; this process is canonical and can be expressed in
precise general mathematical terms by using inclusion
systems;

I There are however examples that fall outside the scope of
3
2 -I , when more refined partiality is involved, when
theories involved, etc.
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Current stage of 3
2-institution theory

I Basic theory (model amalgamation, theory morphisms,
etc.) are already developed (although much more complex
than in the case of ordinary institutions).

I Based on those, new foundations for conceptual blending
proposed:

blending is a lax-cocone with model
amalgamation.

(from this perspective the Smail’s Integers example is not a
blending, but the other examples are accommodated).



Planned developments

I Heterogeneous blending (via Grothendieck 3
2 -institutions).

I More thought on concrete examples.

I Deeper clarification of blending co-cones.

I Implementation in Hets.



THE END
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