Problems

Jürgen Herzog
Universität Duisburg-Essen

August 17-24
Moieciu de Sus, România

Problems

Problem 1. Show that

$$
A=\left(\begin{array}{cccc}
2 & 0 & 3 & 4 \\
1 & -2 & 1 & -1 \\
3 & 0 & 5 & 1 \\
7 & -1 & 12 & 5
\end{array}\right)
$$

is a configuration matrix.
Problem 2. Let $A \in \mathbb{Z}^{d \times n}$. Then I_{A} is a principal ideal if and only if rank $A=n-1$.
Problem 3. Let $A=(3,4,5) \in \mathbb{Z}^{1 \times 3}$. Compute I_{A}.

Problem 4. Let $I \subset K\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$ be the ideal generated by a set \mathcal{S} of 2 -minors of the $2 \times n$-matrix $X=\left(\begin{array}{lll}x_{1} & \cdots & x_{n} \\ y_{1} & \cdots & y_{n}\end{array}\right)$. We denote by $[i, j]$ a 2 -minor with rows i and j. Show that l is a prime ideal if and only $[n]$ is the disjoint union of sets $\mathcal{S}_{1}, \ldots, \mathcal{S}_{k}$ such that $\mathcal{S}=\bigcup_{i=1}^{k}\left\{[i, j]:\{i, j\} \subset \mathcal{S}_{k}\right\}$.
Problem 5. Let char $(K)=0$ and let $\mathbf{b} \in \mathbb{Z}^{n}$. Then $I=\left(f_{\mathbf{b}}\right) \subset S$ is a radical ideal.

Problem 6. Let $\mathbf{b}_{1}, \ldots, \mathbf{b}_{r} \in \mathbb{Z}^{n}$ be \mathbb{Q}-linearly independent vectors. Then $f_{\mathbf{b}_{1}}, \ldots, f_{\mathbf{b}_{r}}$ is a regular sequence.

Problem 7. Show that $\left(x^{k}-y^{k}, x^{\prime}-y^{\prime}\right):(x y)^{\infty}=(x-y)$. Which is the smallest integer m with the property that $\left(x^{k}-y^{k}, x^{\prime}-y^{\prime}\right):(x y)^{m}=(x-y) ?$

Problem 8. Let $L \subset \mathbb{Z}^{n}$ be a lattice. Prove that height $I_{L}=\operatorname{rank} L$.
Problem 9. Let \mathcal{B} be a basis of a lattice L for which \mathbb{Z}^{n} / L is torsionfree. Then $I_{\mathcal{B}}=I_{L}$ if and only if $I_{\mathcal{B}}$ is a prime ideal.

Problem 10. Let $I \subset S$ be the ideal of adjacent 2-minors of a $m \times n$-matrix of indeterminates.
(a) Show that I is a radical ideal if and only if $m \leq 2$ or $n \leq 2$.
(b) Find a polynomial $f \in S \backslash I$ with $f^{2} \in I$, if $m=n=3$.

The ideals $L(P, Q)$ are pretty well studied. Less is known about the algebras $K[P, Q]$.

Problem 11. Show that all the algebras $K[P, Q]$ are normal (and hence CM).

Problem 12. For which P and Q does the defining ideal $J_{P Q}$ of $K[P, Q]$ admit a quadratic Gröbner basis. Is the initial ideal of $J_{P Q}$ squarefree for a suitable monomial order?
Problem 13. What is the projective dimension and the regularity of $J_{P Q}$? For $Q=[2]$ we have a Hibi ring and the answer is known.
Problem 14. Compute the graded Betti numbers of the defining ideal of a Hibi ring $K[L]$ - for example when L is a planar lattice.

Problem 15. Let $I \subset S$ be generated by a regular sequence Show that S / I is not rigid. (Hint: First show than I / I^{2} is a free SI-module)

Problem 16. Let $I \subset S$ be a graded ideal, and assume that K is a perfect field and that $R=S / I$ is a reduced CM ring. Then R is rigid if and only if $\Omega_{R / K} \otimes \omega_{R}$ is $C M$.

Problem 17. Let $I \subset S$ be a graded ideal, and assume that K is a perfect field and that $R=S / I$ is a 1 -dimensional reduced Gorenstein ring. Then R is rigid if and only if $\Omega_{R / K}$ is torsionfree.

Problem 18. Find an inseparable monomial ideal which is not rigid.

Problem 19. Let G be a graph and G^{*} its whisker graph. Show that G^{*} is bi-CM if and only if G is a complete graph.

Problem 20. Which of the ideals $L(P, Q)$ is bi-CM?
Problem 21. Which of the matroidal ideals are inseparable?

Problem 22. Let \mathfrak{m} be the graded maximal ideal of $S=K\left[x_{1}, \ldots, x_{n}\right]$. Compute the module $T^{1}\left(S / \mathfrak{m}^{2}\right)$.
Problem 23. Let $I \subset \mathfrak{m}^{2}$ be a graded ideal with $\operatorname{dim} S / I=0$. Do we always have that $T^{1}(R) \neq 0$?
Problem 24. Let $R=K[H]$ be a numerical semigroup ring. Show that $T^{1}(R)$ is module of finite length.
Problem 25. Compute the length of $T^{1}(R)$ when $R=K\left[t^{h_{1}}, t^{h_{2}}\right]$.

