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Binomial Ideals

Let R = K[x1, . . . , xn] where K is a field. A binomial is a
polynomial of the form xu − λxv where u,v ∈ Nn and λ ∈ K \ {0}.
A binomial ideal is an ideal generated by binomials. We say that
the ideal I of R is a pure binomial ideal if I is generated by pure
difference binomials, i.e. binomials of the form xu − xv with
u,v ∈ Nn.



Generating sets of Binomial Ideals: Main problems

Let B1, . . . ,Bs be binomials in R = K[x1, . . . , xn].

Questions
Let I = ⟨B1, . . . ,Bs⟩.

1 What are the invariants of I, in terms of its generating sets?
2 Are there indispensable binomials among the Bi?
3 What about the monomials that appears as the terms of

binomials that generate I. Are there indispensable among
those?

The indispensable elements are present in every generating set of I.



Binomial Ideals and Fibers

Given a binomial ideal I, consider the equivalence relation:

u ∼I v if xu − λxv ∈ I, for some λ ̸= 0

(in Dickenstein, Matusevich, Miller, (Math. Z.) 2010). For each
such equivalence class, we get a fiber on the set of the monomials
of R. We let the fiber of xu, Fxu to be the set

Fxu := {xv : u ∼I v}.

The system of fibers of I is the set of I-fibers and it forms a
partition of the monomials of R. (Fibers when multiplied by
monomials end up inside other fibers).



An Example of a system of fibers

I = ⟨y8 − xy6, x2y5 − x3y3, x3y3 − x5y2, x6y − x8⟩.
Finite fibers:

singletons: Fxayb , where (a, b) has to be in the region with
corners (7, 0), (5, 1), (4, 2), (3, 2), (2, 3), (2, 4), (1, 5), (0, 7)
|Fxy6 | = |Fx6y| = |Fxy7 | = |Fx7y| = 2, |Fx3y3 | = 3,

Three infinite fibers. Let S = N(−1, 2) + N(2,−1)}.
Fx4y3 = {xayb : (a, b) ∈ N2 ∩ ((4, 3) + S)}
Fx3y4 = {xayb : (a, b) ∈ N2 ∩ ((3, 4) + S)}
Fx4y4 = {xayb : (a, b) ∈ N2 ∩ ((4, 4) + S)}.
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Example
I = (y8 − xy6, x2y5 − x3y3, x3y3 − x5y2, x6y − x8).

blue represents the fiber of x4y3.



Example
I = (y8 − xy6, x2y5 − x3y3, x3y3 − x5y2, x6y − x8).

x4y3 − x3y5 = x(x3y3 − x2y5) ∈ I, so x4y3 ≡ x3y5
or equivalently
x4y3 = x(x3y3) ≡ x(x2y5) = x3y5.



Example
I = (y8 − xy6, x2y5 − x3y3, x3y3 − x5y2, x6y − x8).

(the black fiber underneath has been pushed to the right with
multiplication by x and gives blue monomials).



Example
I = (y8 − xy6, x2y5 − x3y3, x3y3 − x5y2, x6y − x8).

But we can also push the black fiber up by y2 and get three
monomials, one of them already blue. So all of them have to be
blue.
x5y4 = (x5y2)y2 ≡ x3y5 ≡ x4y3



Example

I = (y8 − xy6, x2y5 − x3y3, x3y3 − x5y2, x6y − x8).

we can also push gray up by y and get to a blue monomial
x6y2 = (x6y)y ≡ (x8)y = x8y , etc.



When is a partition of the sets of monomials a system of
fibers?

Let R = K[x1, . . . , xn] where K is a field. We denote by n the set
of monomials of R including 1 = x0, where xu = xu1

1 · · · xunn .

Theorem
Let F be a partition of Tn. There exists a binomial ideal I such
that F is the set of I-fibers if and only if for any u ∈ Nn and any
F ∈ F there exists a G ∈ F such that xuF ⊂ G. Moreover, if F is a
system of fibers, then there exists a pure difference binomial ideal
whose system of fibers is F.

Idea of the proof: If F = (Fi : i ∈ Λ) satisfies the conditions
consider the ideal generated by the set {xu − xv : u,v ∈ Fi, i ∈ Λ}
and show that the system of its fibers is F.



When is a partition of the sets of monomials a system of
fibers?

Let R = K[x1, . . . , xn] where K is a field. We denote by n the set
of monomials of R including 1 = x0, where xu = xu1

1 · · · xunn .

Theorem
Let F be a partition of Tn. There exists a binomial ideal I such
that F is the set of I-fibers if and only if for any u ∈ Nn and any
F ∈ F there exists a G ∈ F such that xuF ⊂ G. Moreover, if F is a
system of fibers, then there exists a pure difference binomial ideal
whose system of fibers is F.

Idea of the proof: If F = (Fi : i ∈ Λ) satisfies the conditions
consider the ideal generated by the set {xu − xv : u,v ∈ Fi, i ∈ Λ}
and show that the system of its fibers is F.



What do we know about systems of fibers.

1 If L is a lattice and L ∩ Nn = {0}, then the fibers are finite.
2 In general, I may have finite and infinite fibers.
3 The fibers depend on the characteristic.
4 If I contains monomials, then the monomials (of I) form a

fiber, the monomial fiber.
5 We can define an equivalence relation on the system of fibers

and order the equivalence classes.
6 Any descending chain of such equivalence classes terminates

since R is Noetherian.



Ordering the fibers.

Let I be a binomial ideal, F, G two I-fibers. Then
F ≡ G if ∃u,v ∈ Nn s.t. xuF ⊂ G and xvG ⊂ F.

We denote by F, the equivalence class of F. We set F ≤ G if there
exists u ∈ Nn such that xuF ⊂ G. We write F < G if F ≤ G and
F ̸= G.

If I is a lattice ideal, then any two equivalence classes of fibers
have the same cardinality (—arxiv).
If a fiber is finite then it is the only element in its equivalence
class.
If I contains monomials and the monomial fiber exists, then its
equivalence class contains exactly one element and it is
maximal.



Example of equivalence classes.
I = ⟨y8 − xy6, x2y5 − x3y3, x3y3 − x5y2, x6y − x8⟩.

What are the equivalence classes? How are they ordered?

The infinite fibers are equivalent.
orange < purple < blue.
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Invariants of Binomial Ideals

Theorem

Let I be a binomial ideal, S a binomial generating set of I and F an
I-fiber. Then the set {FB : B ∈ S} is an invariant of I.

Idea of the proof: Consider the ideals I<F = (B ∈ I : B binomial,
FB < F) and I≤F = (B ∈ I : FB ≤ F). Show that these ideals are
determined by S, i.e. I<F = (B ∈ S : FB < F) and similarly for I≤F.

Example
I = ⟨y8 − xy6, x2y5 − x3y3, x3y3 − x5y2, x6y − x8⟩. All fibers of this
generating set are finite. Thus every generating set of I must have
elements that determine exactly three fibers: Fxy6 , Fx3y3 , Fx6y.



Fibers and Invariants of Binomial Ideals

If I is a lattice ideal I and S1, S2 are two minimal binomial
generating sets of I of minimal cardinality, then

{FB : B ∈ S1} = {FB : B ∈ S2}

where the equality holds for the multisets (i.e. sets together with
the multiplicities of their elements), (—arXiv).

Question
Are there binomials that appear in every minimal generating set?
What about the monomial terms of the generating sets. Are they
somehow unique? Can we determine the monomials that will
always appear?

(Indispensable binomials, Indispensable monomials)



Indispensable monomials

Let I be a binomial ideal and let MI be the ideal generated by all
monomials xu such that 0 ̸= xu − λxv ∈ I, for some v ∈ Nn.

Theorem
If I = (xu1 − λ1xv1 , . . . , xus − λsxvs) with λ1, . . . , λs ∈ K \ {0}
then MI = (xu1 , xv1 , . . . , xus , xvs). The indispensable monomials of
I are precisely the elements of G(MI).

(Generalization of a result of Katsabekis, Ojeda (P.J.M.) 2014).

Example
I = ⟨y8 − xy6, x2y5 − x3y3, x3y3 − x5y2, x6y − x8⟩. Thus

MI = ⟨y8, xy6, x2y5, x3y3, x5y2, x6y, x8⟩.

Since |G(MI)| = 7, every binomial generating set of I must consist
of at least 4 elements.
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Indispensable binomials

Theorem

Let I be a binomial ideal. The binomial 0 ̸= xu − λxv ∈ I (λ ̸= 0)
is indispensable if and only if the fiber F of u consists of exactly
two monomials and xu − λxv /∈ I<F.

Example
Let I = ⟨y8 − xy6, x2y5 − x3y3, x3y3 − x5y2, x6y − x8⟩. The
binomials correspond to three minimal fibers. However, as we saw
|Fxy6 | = |Fx6y| = 2 while |Fx3y3 | = 3. Thus the indispensable
binomials of I are y8 − xy6 and x6y − x8.

But do we have to compute the fibers to find the
indispensable binomials?
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A NEW Algorithm for the Computation of Indispensable
binomials

Previous methods (for toric ideals when L ∩ Nn = {0}):
the algorithm in (Ohsugi,Hibi, 2005) implies computation of
n! reduced Gröbner bases with respect to the lexicographic
orders,
the algorithm in (–,Katsabekis, Thoma, 2007) implies the
computation of the minimal elements in the set of I-fibers, via
the computation of one Gröbner basis,
the algorithm in (Ojeda, Vigneron-Tenorio, 2010) implies
computation of n reduced Gröbner basis with respect to n
degree reverse lexicographic orders.



A NEW Algorithm for the Computation of Indispensable
binomials

The new algorithm is a polynomial time algorithm.
It basically checks for divisibility of the monomial terms of the
given binomial generating set and counts how many times
they appear.
The binomial generating set needs not be minimal.
In particular no Gröbner bases computation needs to be
involved.



The Algorithm for the Computation of Indispensable
binomials

What we know so far: The binomial 0 ̸= xu − λxv ∈ I is
indispensable if and only if the fiber F of u consists of exactly two
monomials and xu − λxv /∈ I<F.
We let Supp(xu − λxv) = {xu, xv}. If S is a finite set of binomials,
we let F(S) be the graph with vertex set ∪B∈S Supp(B) and edges
{xu, xv} whenever xu − λxv ∈ S, up to a nonzero scalar
multiplication.

Theorem
Let S be a binomial minimal generating set of I, The binomial
B = xu − λxv ∈ S is indispensable if and only if xu, xv ∈ G(MI),
{xu, xv} is a simple edge of F(S) and a connected component of
F(S).
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Example
Let I = ⟨y8 − xy6, x2y5 − x3y3, x3y3 − x5y2, x6y − x8⟩.

From the study of the fibers we know that there are exactly two
indispensable binomials.



Example
Let I = ⟨y8 − xy6, x2y5 − x3y3, x3y3 − x5y2, x6y − x8⟩.

G(MI) = {y8, xy6, x2y5, x3y3, x5y2, x6y, x8}.
From the graph F(S) and the minimal generating set of MI we get
immediately that there exactly two indispensable binomials.



The Algorithm for the Computation of Indispensable
binomials



Testing if the ideal is generated by indispensable binomials

Application In (Aoki, Takemura, (A.N.Z.J.Stat) 2003) it was
shown that a toric ideal is generated by indispensable binomials.
We recover this result as follows: first, using a computer algebra
program, we compute a generating set for IA333 : using CocoA we
see that it has cardinality 114. We minimize to get a generating set
of cardinality 81 and finally we compute |G(MIA333

)|, which is 162.



Graver Basis

Let I be a pure binomial ideal. A binomial 0 ̸= xu − xv ∈ I is called
a primitive binomial of I if there exists no other binomial
0 ̸= xu′ − xv′ ∈ I such that xu′ divides xu and xv′ divides xv. The
set of all primitive binomials of I is called the Graver basis of I, and
denoted by Gr(I).

Theorem
Let I be a pure binomial ideal. Every binomial in the universal
Gröbner basis of I is contained in Gr(I). In particular, Gr(I) is a
generating set for the ideal I. Moreover, Gr(I) is a finite set.



Proof of the theorem and a Corollary
Idea of proof: Universal Gröbner basis ⊂ of Gr(I) as for toric ideals.
To show that Gr(I) is a finite set look at the set
{xuyv, xvyu : xu − xv ∈ Gr(I)} which has no divisibility relations
and use the following lemma:

Lemma
If a set of monomials has no divisibility relations then it is
necessarily finite.

If I is a pure binomial ideal, consider
Λ(I) := (xuyv − xvyu : xu − xv ∈ Gr(I)).

Corollary
Λ(I) is generated by indispensable binomials.

Caution The minimal generating set of Λ(I) is not necessarily a
Graver basis of Λ(I) or the universal Gröbner basis of Λ(I).


