## Connectedness and regularity for dual graphs of projective curves

Michela Di Marca (University of Genova)

## EMS SUMMER SCHOOL ON MULTIGRADED ALGEBRA AND APPLICATIONS

August 17-24, Moieciu de Sus, Romania
joint work with Bruno Benedetti and Matteo Varbaro

## Notations

- $S=k\left[x_{0}, x_{1}, \ldots, x_{n}\right], k$ some field.


## Notations

- $S=k\left[x_{0}, x_{1}, \ldots, x_{n}\right], k$ some field.
- $I \subset S$ homogeneous equidimensional ideal with $\operatorname{Min}(I)=\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}\right\}$ set of minimal primes:
$\sqrt{I}=\mathfrak{p}_{1} \cap \ldots \cap \mathfrak{p}_{s} \quad$ and $\operatorname{height}\left(\mathfrak{p}_{i}\right)=\operatorname{height}(I), i=1, \ldots, s$.


## Notations

- $S=k\left[x_{0}, x_{1}, \ldots, x_{n}\right], k$ some field.
- $I \subset S$ homogeneous equidimensional ideal with
$\operatorname{Min}(I)=\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}\right\}$ set of minimal primes:

$$
\sqrt{I}=\mathfrak{p}_{1} \cap \ldots \cap \mathfrak{p}_{s} \quad \text { and } \operatorname{height}\left(\mathfrak{p}_{i}\right)=\operatorname{height}(I), i=1, \ldots, s
$$

- $R=S / I, X=\operatorname{Proj}(R)$,

$$
X_{\text {red }}=X_{1} \cup \ldots \cup X_{s}
$$

where $X_{i}=\operatorname{Proj}\left(S / \mathfrak{p}_{i}\right)$ are the irreducible components,

$$
\operatorname{codim}\left(X_{i}\right)=\operatorname{codim}(X)=\operatorname{height}(I), i=1, \ldots, s
$$

## Dual graphs: general definition

## Algebraic ( $R=S / I$ )

Geometric $(X=\operatorname{Proj}(R))$
$\operatorname{Min}(I)=\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}\right\}$
$X_{1}, \ldots, X_{s}$ irreducible components

## Dual graphs: general definition

$$
\begin{array}{cc}
\text { Algebraic }(R=S / I) & \text { Geometric }(X=\operatorname{Proj}(R)) \\
\operatorname{Min}(I)=\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}\right\} & X_{1}, \ldots, X_{s} \text { irreducible components } \\
G(I)=([s], E),[s]=\{1, \ldots, s\} & G(X)=([s], E),[s]=\{1, \ldots, s\}
\end{array}
$$

## Dual graphs: general definition

Algebraic $(R=S / I)$
Geometric $(X=\operatorname{Proj}(R))$
$\operatorname{Min}(I)=\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s}\right\}$
$X_{1}, \ldots, X_{s}$ irreducible components

$$
G(I)=([s], E),[s]=\{1, \ldots, s\} \quad G(X)=([s], E),[s]=\{1, \ldots, s\}
$$

$$
\{i, j\} \in E
$$

$$
\{i, j\} \in E
$$

$$
\Uparrow
$$

$\operatorname{height}\left(\mathfrak{p}_{i}+\mathfrak{p}_{j}\right)=\operatorname{height}(I)+1$
$\operatorname{dim}\left(X_{i} \cap X_{j}\right)=\operatorname{dim}(X)-1$

## Example: dual graph of subspace arrangements

$X \subset \mathbb{P}_{k}^{n}$ subspace arrangement:

$$
X=X_{1} \cup \ldots \cup X_{s}
$$

$X_{i}$ projective subspace of dimension $d, \forall i=1, \ldots, s$.

## Example: dual graph of subspace arrangements

$X \subset \mathbb{P}_{k}^{n}$ subspace arrangement:

$$
X=X_{1} \cup \ldots \cup X_{s}
$$

$X_{i}$ projective subspace of dimension $d, \forall i=1, \ldots, s$.

$$
G(X)=([s], E) \text {, where }\{i, j\} \in E \Leftrightarrow \operatorname{dim}\left(X_{i} \cap X_{j}\right)=d-1 .
$$

(Here "dim" is the dimension as projective spaces.)


## Example: dual graph of simplicial complexes

$\Delta$ pure simplicial complex on $n+1$ vertices with facets $\left\{F_{1}, \ldots, F_{s}\right\}$ :

$$
\left|F_{i}\right|=\operatorname{dim}(\Delta)+1, \forall i=1, \ldots, s
$$

## Example: dual graph of simplicial complexes

$\Delta$ pure simplicial complex on $n+1$ vertices with facets $\left\{F_{1}, \ldots, F_{s}\right\}$ :

$$
\left|F_{i}\right|=\operatorname{dim}(\Delta)+1, \forall i=1, \ldots, s
$$

For the squarefree monomial ideal $I_{\Delta}$, the prime decomposition is:

$$
I_{\Delta}=\left(x_{i}: i \notin F_{1}\right) \cap \ldots \cap\left(x_{i}: i \notin F_{s}\right) .
$$

$X_{\Delta}:=\operatorname{Proj}\left(S / I_{\Delta}\right)$ is a coordinate arrangement.

## Example: dual graph of simplicial complexes

$\Delta$ pure simplicial complex on $n+1$ vertices with facets $\left\{F_{1}, \ldots, F_{s}\right\}$ :

$$
\left|F_{i}\right|=\operatorname{dim}(\Delta)+1, \forall i=1, \ldots, s
$$

For the squarefree monomial ideal $I_{\Delta}$, the prime decomposition is:

$$
I_{\Delta}=\left(x_{i}: i \notin F_{1}\right) \cap \ldots \cap\left(x_{i}: i \notin F_{s}\right)
$$

$X_{\Delta}:=\operatorname{Proj}\left(S / I_{\Delta}\right)$ is a coordinate arrangement.
Here $G\left(X_{\Delta}\right)=([s], E)$, where $\{i, j\} \in E \Leftrightarrow\left|F_{i} \cap F_{j}\right|=\operatorname{dim}(\Delta)$.


## Example: dual graph of curves

$C \subset \mathbb{P}_{k}^{n}$ projective curve:

$$
C=C_{1} \cup \ldots \cup C_{s},
$$

$C_{i}$ projective algebraic set of dimension $1, \forall i=1, \ldots, s$.

## Example: dual graph of curves

$C \subset \mathbb{P}_{k}^{n}$ projective curve:

$$
C=C_{1} \cup \ldots \cup C_{s},
$$

$C_{i}$ projective algebraic set of dimension $1, \forall i=1, \ldots, s$.
Here $G(C)=([s], E)$, where $\{i, j\} \in E \Leftrightarrow C_{i} \cap C_{j} \neq \emptyset$.


## The inclusions are strict

$\left\{\begin{array}{c}\text { dual graphs } \\ \text { of simplicial } \\ \text { complexes }\end{array}\right\} \subsetneq\left\{\begin{array}{c}\text { dual graphs } \\ \text { of subspace } \\ \text { arrangements }\end{array}\right\} \subsetneq\left\{\begin{array}{c}\text { dual graphs } \\ \text { of projective } \\ \text { varieties }\end{array}\right\}=\{$ all graphs $\}$


## The inclusions are strict

$$
\left\{\begin{array}{c}
\text { dual graphs } \\
\text { of simplicial } \\
\text { complexes }
\end{array}\right\} \subsetneq\left\{\begin{array}{c}
\text { dual graphs } \\
\text { of subspace } \\
\text { arrangements }
\end{array}\right\} \subsetneq\left\{\begin{array}{c}
\text { dual graphs } \\
\text { of projective } \\
\text { varieties }
\end{array}\right\}=\{\text { all graphs }\}
$$



By Bertini's theorem, starting from a dimension $d$ projective variety $X$ and doing $d-2$ generic hyperplane sections, we can find a curve $C$ with

$$
G(X)=G(C) .
$$

## The inclusions are strict

$$
\left\{\begin{array}{c}
\text { dual graphs } \\
\text { of simplicial } \\
\text { complexes }
\end{array}\right\} \subsetneq\left\{\begin{array}{c}
\text { dual graphs } \\
\text { of subspace } \\
\text { arrangements }
\end{array}\right\} \subsetneq\left\{\begin{array}{c}
\text { dual graphs } \\
\text { of projective } \\
\text { varieties }
\end{array}\right\}=\{\text { all graphs }\}
$$



By Bertini's theorem, starting from a dimension $d$ projective variety $X$ and doing $d-2$ generic hyperplane sections, we can find a curve $C$ with

$$
G(X)=G(C) .
$$

Hence:
$\left\{\begin{array}{c}\text { dual graphs } \\ \text { of subspace } \\ \text { arrangements }\end{array}\right\}=\left\{\begin{array}{c}\text { dual graphs } \\ \text { of line } \\ \text { arrangements }\end{array}\right\} ;\left\{\begin{array}{c}\text { dual graphs } \\ \text { of projective } \\ \text { varieties }\end{array}\right\}=\left\{\begin{array}{c}\text { dual graphs } \\ \text { of projective } \\ \text { curves }\end{array}\right\}$

## Measures of connectedness

Two ways of quantifying the connectedness of a simple graph $G$ on the vertex set [s] are provided by the following invariants:

- the diameter of $G$ :

$$
\operatorname{diam} G:=\max \{d(i, j): i, j \in[s]\}
$$

## Measures of connectedness

Two ways of quantifying the connectedness of a simple graph $G$ on the vertex set [s] are provided by the following invariants:

- the diameter of $G$ :

$$
\operatorname{diam} G:=\max \{d(i, j): i, j \in[s]\}
$$

- the integer $r$ such that $G$ is $r$-connected:

$$
r:=\min \left\{|A|: A \subset[s], \quad G_{[s] \backslash A} \text { is disconnected or a single point }\right\} .
$$

## Measures of connectedness

Two ways of quantifying the connectedness of a simple graph $G$ on the vertex set [s] are provided by the following invariants:

- the diameter of $G$ :

$$
\operatorname{diam} G:=\max \{d(i, j): i, j \in[s]\}
$$

- the integer $r$ such that $G$ is $r$-connected:

$$
r:=\min \left\{|A|: A \subset[s], \quad G_{[s] \backslash A} \text { is disconnected or a single point }\right\} .
$$

If $G$ is $r$-connected, every vertex in $G$ has at least $r$ neighbours.
$G$ is said $r$-regular when every vertex of $G$ has exactly $r$ neighbours.

## Castelnuovo-Mumford regularity

Consider a minimal free resolution of $R$ as $S$-module:

$$
\mathbb{F} .: 0 \rightarrow F_{p} \rightarrow \ldots F_{j} \rightarrow F_{j-1} \rightarrow \ldots \rightarrow F_{1} \rightarrow F_{0} \rightarrow R \rightarrow 0
$$

## Castelnuovo-Mumford regularity

Consider a minimal free resolution of $R$ as $S$-module:

$$
\mathbb{F}_{.}: 0 \rightarrow F_{p} \rightarrow \ldots F_{j} \rightarrow F_{j-1} \rightarrow \ldots \rightarrow F_{1} \rightarrow F_{0} \rightarrow R \rightarrow 0
$$

The (Castelnuovo-Mumford) regularity of $R$ is:

$$
\operatorname{reg}(R):=\min \left\{r \mid F_{j} \text { is generated in degrees } \leq r+j, \forall j\right\}
$$

(If $X=\operatorname{Proj}(R)$, then $\operatorname{reg}(X)=\operatorname{reg}(R)-1$.)

## Castelnuovo-Mumford regularity

Consider a minimal free resolution of $R$ as $S$-module:

$$
\mathbb{F} .: 0 \rightarrow F_{p} \rightarrow \ldots F_{j} \rightarrow F_{j-1} \rightarrow \ldots \rightarrow F_{1} \rightarrow F_{0} \rightarrow R \rightarrow 0
$$

The (Castelnuovo-Mumford) regularity of $R$ is:

$$
\operatorname{reg}(R):=\min \left\{r \mid F_{j} \text { is generated in degrees } \leq r+j, \forall j\right\}
$$

(If $X=\operatorname{Proj}(R)$, then $\operatorname{reg}(X)=\operatorname{reg}(R)-1$.)
Remark
When $I=\left(f_{1}, \ldots, f_{h}\right)$ is a complete intersection ideal (i.e. $h=$ height $(I)$ ), $\operatorname{deg}\left(f_{i}\right)=d_{i}$ and $R=S / I$, we have:

$$
\operatorname{reg}(R)=d_{1}+\ldots+d_{h}-h
$$

## Good properties on $S / I \Rightarrow$ Better connectedness on $G(I)$

Theorem (Hartshorne 1962)
If $X \subset \mathbb{P}^{n}$ is arithmetically Cohen-Macaulay, $G(X)$ is connected.

## Good properties on $S / I \Rightarrow$ Better connectedness on $G(I)$

Theorem (Hartshorne 1962)
If $X \subset \mathbb{P}^{n}$ is arithmetically Cohen-Macaulay, $G(X)$ is connected.

Theorem (Benedetti, Varbaro 2015)
$X=X_{1} \cup \ldots \cup X_{s} \subset \mathbb{P}^{n}$ arithmetically Gorenstein (e.g. complete intersection) subspace arrangement of regularity $r$.
Then $G(X)$ is $r-1$-connected, and hence

$$
\operatorname{diam}(G(X)) \leq\left\lfloor\frac{s-2}{r}\right\rfloor+1
$$

## Example: lines on a smooth quadric

If $Q \subseteq \mathbb{P}^{3}$ is a smooth quadric, and $X$ is the union of $p$ lines of a ruling of $Q$, and $q$ of the other ruling, then $G(X)$ is the complete bipartite graph $K_{p, q}$.


Figure: $K_{3,3}$

## Example: lines on a smooth quadric

If $Q \subseteq \mathbb{P}^{3}$ is a smooth quadric, and $X$ is the union of $p$ lines of a ruling of $Q$, and $q$ of the other ruling, then $G(X)$ is the complete bipartite graph $K_{p, q}$.


Figure: $K_{3,3}$

One can check that $X \subseteq \mathbb{P}^{3}$ is a complete intersection (of $Q$ and an union of $p$ planes) if and only if $p=q$. In this case

- $\operatorname{reg} X-1=p$.
- $G(X)$ is $p$-connected.
- $G(X)$ is $p$-regular.


## Example: 27 lines on a cubic

Let $Z \subseteq \mathbb{P}^{3}$ be a smooth cubic, and $X=\bigcup_{i=1}^{27} X_{i}$ be the union of all the lines on $Z$.


Figure: Clebsch's cubic: $x_{0}^{3}+x_{1}^{3}+x_{2}^{3}+x_{3}^{3}=\left(x_{0}+x_{1}+x_{2}+x_{3}\right)^{3}$

## Example: 27 lines on a cubic

Let $Z \subseteq \mathbb{P}^{3}$ be a smooth cubic, and $X=\bigcup_{i=1}^{27} X_{i}$ be the union of all the lines on $Z$.


Figure: Clebsch's cubic: $x_{0}^{3}+x_{1}^{3}+x_{2}^{3}+x_{3}^{3}=\left(x_{0}+x_{1}+x_{2}+x_{3}\right)^{3}$
$X$ is a complete intersection (of $Z$ and an union of 9 planes). In this case:

- $\operatorname{reg} X-1=10$.
- $G(X)$ is 10 -connected.
- $G(X)$ is 10 -regular.


## Examples in higher degrees

- The general surface of degree $d \geq 4$ in $\mathbb{P}^{3}$ contains no lines.


## Examples in higher degrees

- The general surface of degree $d \geq 4$ in $\mathbb{P}^{3}$ contains no lines.
- The Fermat surfaces $Z$ of degree $d$ with equation:

$$
x_{0}^{d}+x_{1}^{d}+x_{2}^{d}+x_{3}^{d}=0
$$

contains $3 d^{2}$ lines.

## Examples in higher degrees

- The general surface of degree $d \geq 4$ in $\mathbb{P}^{3}$ contains no lines.
- The Fermat surfaces $Z$ of degree $d$ with equation:

$$
x_{0}^{d}+x_{1}^{d}+x_{2}^{d}+x_{3}^{d}=0
$$

contains $3 d^{2}$ lines.

- For every $d$, this line arrangement $X$ on $Z$ has dual graph $G(X)$ consisting in $3 d$ complete graphs $K_{d}$, and each pair of $K_{d}$ is connected by a complete matching.
- $G(X)$ is $4 d-2$-regular.
- $X$ is a complete intersection between $Z$ and an union of $3 d$ planes and hence $\operatorname{reg}(X)=(4 d-2)-1$.


## The two notions of regularity coincides!

Theorem (Benedetti, D., Varbaro)

$X \subset \mathbb{P}^{n}$ arithmetically Gorenstein (e.g. complete intersection) line arrangement with regularity $r$ having planar singularities.
Then $G(X)$ is $r$ - 1 -regular.

## The two notions of regularity coincides!

```
Theorem (Benedetti, D., Varbaro)
X\subset\mp@subsup{\mathbb{P}}{}{n}}\mathrm{ arithmetically Gorenstein (e.g. complete intersection) line
arrangement with regularity r having planar singularities.
Then G(X) is r-1-regular.
```

In other words, we want a line arrangement such that if three lines meet at the same point, then they are all coplanar.

## The two notions of regularity coincides!

## Theorem (Benedetti, D., Varbaro)

$X \subset \mathbb{P}^{n}$ arithmetically Gorenstein (e.g. complete intersection) line arrangement with regularity $r$ having planar singularities.
Then $G(X)$ is $r$ - 1-regular.

In other words, we want a line arrangement such that if three lines meet at the same point, then they are all coplanar.

## Remark

- If no three lines of the arrangement meet at the same point, the hypothesis of having only planar singularities is fulfilled.


## The hypothesis of having planar singularities is necessary

## Example

- Let $Y:=\operatorname{Proj}(S / J) \subset \mathbb{P}^{n-1}$, where $J=\left(f_{1}, \ldots, f_{d}\right)$ is a complete intersection of $n-1$ polynomials of degree $d$.
- The cone $X \subset \mathbb{P}^{n}$ of $Y$ is an arrangement of $d^{n-1}$ lines in $\mathbb{P}^{n}$ with

$$
\operatorname{reg} X=(n-1) d-n+2
$$

- Since all lines in $X$ pass through the origin, $G(X)$ is the complete graph, so it is $\left(d^{n-1}-1\right)$-regular and

$$
d^{n-1}-1 \gg((n-1) d-n+2)-1 .
$$

## The hypothesis of having planar singularities is necessary

## Example

- Let $Y:=\operatorname{Proj}(S / J) \subset \mathbb{P}^{n-1}$, where $J=\left(f_{1}, \ldots, f_{d}\right)$ is a complete intersection of $n-1$ polynomials of degree $d$.
- The cone $X \subset \mathbb{P}^{n}$ of $Y$ is an arrangement of $d^{n-1}$ lines in $\mathbb{P}^{n}$ with

$$
\operatorname{reg} X=(n-1) d-n+2
$$

- Since all lines in $X$ pass through the origin, $G(X)$ is the complete graph, so it is $\left(d^{n-1}-1\right)$-regular and

$$
d^{n-1}-1 \gg((n-1) d-n+2)-1 .
$$

There are also examples of complete intersection line arrangements with non-planar singularities whose dual graph is not even regular!

## Lines on a smooth surface

If an arrangement of lines in $\mathbb{P}^{3}$ is contained in a smooth surface, the singularities of the arrangement are always planar.

## Lines on a smooth surface

If an arrangement of lines in $\mathbb{P}^{3}$ is contained in a smooth surface, the singularities of the arrangement are always planar.

## Corollary

Suppose to have the line arrangement

$$
X=L_{1} \cup \ldots \cup L_{d e} \subset \mathbb{P}^{3},
$$

consisting of $d \cdot e$ lines.
If the lines lie on two surfaces of degree $d$ and e without common component and one of them is smooth, then each line meets exactly

$$
d+e-2
$$

of the others.

## What about other projective curves?

Theorem (Benedetti, Bolognese, Varbaro 2015)
$X \subset \mathbb{P}^{n}$ arithmetically Gorenstein curve of regularity $r$.
If every primary component of $X$ has regularity $\leq R$, then

$$
G(X) \text { is }\left\lfloor\frac{r+R-2}{R}\right\rfloor \text { - connected. }
$$

## What about other projective curves?

Theorem (Benedetti, Bolognese, Varbaro 2015)
$X \subset \mathbb{P}^{n}$ arithmetically Gorenstein curve of regularity $r$.
If every primary component of $X$ has regularity $\leq R$, then

$$
G(X) \text { is }\left\lfloor\frac{r+R-2}{R}\right\rfloor \text { - connected. }
$$

In particular,

$$
\operatorname{diam}(G(X)) \leq\left\lfloor\frac{R(s-2)}{r+R-2}\right\rfloor+1
$$

## What about other projective curves?

Theorem (Benedetti, Bolognese, Varbaro 2015)
$X \subset \mathbb{P}^{n}$ arithmetically Gorenstein curve of regularity $r$.
If every primary component of $X$ has regularity $\leq R$, then

$$
G(X) \text { is }\left\lfloor\frac{r+R-2}{R}\right\rfloor \text { - connected. }
$$

In particular,

$$
\operatorname{diam}(G(X)) \leq\left\lfloor\frac{R(s-2)}{r+R-2}\right\rfloor+1
$$

Conjecture (Benedetti, Varbaro 2014)
If $X \subset \mathbb{P}^{n}$ is arithmetically Cohen-Macaulay and $I_{X} \subset S$ is generated by quadrics, then

$$
\operatorname{diam}(G(X)) \leq \operatorname{height}\left(I_{X}\right)(=\operatorname{codim}(X))
$$

## About the conjecture

Proposition
The conjecture is true up to codimension 4 for aGorenstein reduced.

## About the conjecture

## Proposition

The conjecture is true up to codimension 4 for aGorenstein reduced.
Without the assumption "generated by quadrics" the conjecture is false already for line arrangements in codimension 2 (while for simplicial complex is always true for codim $=2,3$ ).

## About the conjecture

## Proposition

The conjecture is true up to codimension 4 for aGorenstein reduced.
Without the assumption "generated by quadrics" the conjecture is false already for line arrangements in codimension 2 (while for simplicial complex is always true for codim $=2,3$ ).

## Example (Schläfli double six)

There is a sub-arrangement $X$ of the 27 lines on a smooth cubic having the following dual graph:

$X$ is a complete intersection of a cubic and a quartic.
Yet, $\operatorname{diam}(G(X))=3$.

