# Lecture 3: Deformations and separations 

Jürgen Herzog<br>Universität Duisburg-Essen

August 17-24
Moieciu de Sus, România

## Deformations

We fix a field $K$ and let $\mathcal{A}$ be the category of standard graded $K$-algebras. For each $A \in \mathcal{A}$ we denote by $\mathfrak{m}_{A}$ the graded maximal ideal of $A$.

## Deformations

We fix a field $K$ and let $\mathcal{A}$ be the category of standard graded $K$-algebras. For each $A \in \mathcal{A}$ we denote by $\mathfrak{m}_{A}$ the graded maximal ideal of $A$.

Let $A \in \mathcal{A}$. A deformation of $A$ with basis $B$ is a flat homomorphism $B \rightarrow C$ of standard graded $K$-algebras with fiber $C / \mathfrak{m}_{B} C=A$.

## Deformations

We fix a field $K$ and let $\mathcal{A}$ be the category of standard graded $K$-algebras. For each $A \in \mathcal{A}$ we denote by $\mathfrak{m}_{A}$ the graded maximal ideal of $A$.

Let $A \in \mathcal{A}$. A deformation of $A$ with basis $B$ is a flat homomorphism $B \rightarrow C$ of standard graded $K$-algebras with fiber $C / \mathfrak{m}_{B} C=A$.

Thus we obtain a commutative diagram of standard graded $K$-algebras


Let $I \subset B$ be a graded ideal. Then $B \rightarrow C$ induces the flat homomorphism $B / I \rightarrow C / I C$, and hence induces the deformation

$$
\begin{array}{cc}
C / I C & A \\
\uparrow & \uparrow \\
B / I & \longrightarrow K .
\end{array}
$$

Let $I \subset B$ be a graded ideal. Then $B \rightarrow C$ induces the flat homomorphism $B / I \rightarrow C / I C$, and hence induces the deformation

$$
\begin{array}{cc}
C / I C & A \\
\uparrow & \uparrow \\
B / I \longrightarrow K .
\end{array}
$$

We denote by $K[\epsilon]$ the $K$-algebra with $\epsilon \neq 0$ but $\epsilon^{2}=0$.

Let $I \subset B$ be a graded ideal. Then $B \rightarrow C$ induces the flat homomorphism $B / I \rightarrow C / I C$, and hence induces the deformation

$$
\begin{array}{cc}
C / I C & A \\
\uparrow & \\
\hline
\end{array}
$$

We denote by $K[\epsilon]$ the $K$-algebra with $\epsilon \neq 0$ but $\epsilon^{2}=0$.
Any surjective $K$-algebra homomorphism $B \rightarrow K[\epsilon]$ induces a deformation of $A$ with basis $K[\epsilon]$.

## Infinitesimal deformations

A deformation of $A$ with basis $K[\epsilon]$ is called an infinitesimal deformation.

## Infinitesimal deformations

A deformation of $A$ with basis $K[\epsilon]$ is called an infinitesimal deformation.


## Infinitesimal deformations

A deformation of $A$ with basis $K[\epsilon]$ is called an infinitesimal deformation.


Lemma. $K[\epsilon] \rightarrow C$ is flat if and only if $0: c \epsilon=\epsilon C$.

## Infinitesimal deformations

A deformation of $A$ with basis $K[\epsilon]$ is called an infinitesimal deformation.


Lemma. $K[\epsilon] \rightarrow C$ is flat if and only if $0: C \epsilon=\epsilon C$.
Proof. $C$ is a flat $K[\epsilon]$-module, if and only if

$$
\operatorname{Tor}_{1}^{K[\epsilon]}(C, K[\epsilon] /(\epsilon))=0
$$

## Infinitesimal deformations

A deformation of $A$ with basis $K[\epsilon]$ is called an infinitesimal deformation.


Lemma. $K[\epsilon] \rightarrow C$ is flat if and only if $0: c \epsilon=\epsilon C$.
Proof. $C$ is a flat $K[\epsilon]$-module, if and only if

$$
\operatorname{Tor}_{1}^{K[\epsilon]}(C, K[\epsilon] /(\epsilon))=0
$$

We have the exact sequence

$$
\cdots \xrightarrow{\epsilon} K[\epsilon] \xrightarrow{\epsilon} K[\epsilon] \longrightarrow 0[\epsilon] /(\epsilon) \longrightarrow 0 .
$$

Tensoring with $C$ we obtain the complex

whose $i$ th homology is $\left.\operatorname{Tor}_{i}(C, K[\epsilon]) /(\epsilon)\right)$.

Tensoring with $C$ we obtain the complex

$$
\cdots \xrightarrow{\epsilon} C \xrightarrow{\epsilon} C \longrightarrow 0,
$$

whose $i$ th homology is $\left.\operatorname{Tor}_{i}(C, K[\epsilon]) /(\epsilon)\right)$.
Thus we see that $\left.\operatorname{Tor}_{1}(C, K[\epsilon]) /(\epsilon)\right)=\left(0:_{C} \epsilon\right) / \epsilon C$. The assertion follows. $\square$.

Tensoring with $C$ we obtain the complex

$$
\cdots \xrightarrow{\epsilon} C \xrightarrow{\epsilon} C \longrightarrow 0
$$

whose $i$ th homology is $\left.\operatorname{Tor}_{i}(C, K[\epsilon]) /(\epsilon)\right)$.
Thus we see that $\left.\operatorname{Tor}_{1}(C, K[\epsilon]) /(\epsilon)\right)=\left(0:_{C} \epsilon\right) / \epsilon C$. The assertion follows. $\square$.

Whenever there is a deformation $B \rightarrow C$ of $A$ with $B \neq k$, then there is also an infinitesimal deformation, induced by a surjective $K$-algebra homomorphism.

Tensoring with $C$ we obtain the complex

$$
\cdots \xrightarrow{\epsilon} C \xrightarrow{\epsilon} C \longrightarrow 0
$$

whose $i$ th homology is $\left.\operatorname{Tor}_{i}(C, K[\epsilon]) /(\epsilon)\right)$.
Thus we see that $\left.\operatorname{Tor}_{1}(C, K[\epsilon]) /(\epsilon)\right)=\left(0:_{C} \epsilon\right) / \epsilon C$. The assertion follows. $\square$.

Whenever there is a deformation $B \rightarrow C$ of $A$ with $B \neq k$, then there is also an infinitesimal deformation, induced by a surjective $K$-algebra homomorphism.

Thus, if there is no infinitesimal deformation, then there cannot by any other deformation.

An infinitesimal deformation always exists. For example

$$
A[\epsilon]=A \otimes_{K} K[\epsilon] \longrightarrow A
$$



An infinitesimal deformation always exists. For example

$$
A[\epsilon]=A \otimes_{K} K[\epsilon] \longrightarrow A
$$



However this is a trivial deformation.

An infinitesimal deformation always exists. For example

$$
\begin{aligned}
A[\epsilon]=A \otimes_{K} K[\epsilon] & \longrightarrow A \\
\uparrow_{K[\epsilon]} & \longrightarrow \\
& \uparrow
\end{aligned}
$$

However this is a trivial deformation.
More generally we say that $C$ is a trivial deformation of $A$ with basis $B$, if $C \simeq A \otimes_{K} B$ as a $B$-algebra, and this isomorphism induces the identity on $A$ modulo $\mathfrak{m}_{B}$.

The algebra $A$ is called rigid, if $A$ admits no non-trivial infinitesimal deformation.

The algebra $A$ is called rigid, if $A$ admits no non-trivial infinitesimal deformation.

Can an infinitesimal deformation of $A$ be lifted to a deformation with basis $B$ ?

The algebra $A$ is called rigid, if $A$ admits no non-trivial infinitesimal deformation.

Can an infinitesimal deformation of $A$ be lifted to a deformation with basis $B$ ? In general there are obstructions to do this.

The algebra $A$ is called rigid, if $A$ admits no non-trivial infinitesimal deformation.

Can an infinitesimal deformation of $A$ be lifted to a deformation with basis $B$ ? In general there are obstructions to do this.

An infinitesimal deformation of $A$ which is induced by a deformation of $A$ with basis $K[t]$ (the polynomial ring), is called unobstructed.

## The cotangent functor $T^{1}$

How can we find and classify all non-trivial infinitesimal deformations of $S / I$ ?

## The cotangent functor $T^{1}$

How can we find and classify all non-trivial infinitesimal deformations of $S / I$ ?

Let $S=K\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring and let $A=S / I$ where $I \subset S$ is a graded ideal.

## The cotangent functor $T^{1}$

How can we find and classify all non-trivial infinitesimal deformations of $S / I$ ?

Let $S=K\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring and let $A=S / I$ where $I \subset S$ is a graded ideal.

Let $J \subset S[\epsilon]$ be a graded ideal, and let $C=S[\epsilon] / J$ be a potential infinitesimal deformation of $S / I$.

## The cotangent functor $T^{1}$

How can we find and classify all non-trivial infinitesimal deformations of $S / I$ ?

Let $S=K\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring and let $A=S / I$ where $I \subset S$ is a graded ideal.

Let $J \subset S[\epsilon]$ be a graded ideal, and let $C=S[\epsilon] / J$ be a potential infinitesimal deformation of $S / I$.

Proposition: Let $I=\left(f_{1}, \ldots, f_{m}\right)$. Then
$J=\left(f_{1}+g_{1} \epsilon, \ldots, f_{m}+g_{m} \epsilon\right)$ and $K[\epsilon] \rightarrow S[\epsilon] / J$ is flat if and only
$\varphi: I \rightarrow S / I$ with $f_{i} \mapsto g_{i}+I$ is a is a well-defined $S$-module homomorphism.

Proof. Assume that $K[\epsilon] \rightarrow C$ is flat. Let $\sum_{i} h_{i} f_{i}=0$. We want to show that $\sum_{i} h_{i} g_{i} \in I$.

Proof. Assume that $K[\epsilon] \rightarrow C$ is flat. Let $\sum_{i} h_{i} f_{i}=0$. We want to show that $\sum_{i} h_{i} g_{i} \in I$. To see this, let $g=\sum_{i} h_{i}\left(f_{i}+\epsilon g_{i}\right)$. Then $g=\epsilon\left(\sum_{i} h_{i} g_{i}\right)$ and $g \in J$. Therefore, $\sum_{i} h_{i} g_{i} \in J: \epsilon$. Since $C$ is a flat $K[\epsilon]$-module, there exists $p \in S$ such that $\sum_{i} h_{i} g_{i}-\epsilon p \in J$. Modulo $\epsilon$ it follows that $\sum_{i} h_{i} g_{i} \in I$. The converse direction is proved similarly. $\square$

Proof. Assume that $K[\epsilon] \rightarrow C$ is flat. Let $\sum_{i} h_{i} f_{i}=0$. We want to show that $\sum_{i} h_{i} g_{i} \in I$. To see this, let $g=\sum_{i} h_{i}\left(f_{i}+\epsilon g_{i}\right)$. Then $g=\epsilon\left(\sum_{i} h_{i} g_{i}\right)$ and $g \in J$. Therefore, $\sum_{i} h_{i} g_{i} \in J: \epsilon$. Since $C$ is a flat $K[\epsilon]$-module, there exists $p \in S$ such that $\sum_{i} h_{i} g_{i}-\epsilon p \in J$. Modulo $\epsilon$ it follows that $\sum_{i} h_{i} g_{i} \in I$. The converse direction is proved similarly. $\square$

The proposition says that the infinitesimal deformations of $S / I$ are in bijection to the elements of $I^{*}=\operatorname{Hom}_{S}(I, S / I)$.

Proof. Assume that $K[\epsilon] \rightarrow C$ is flat. Let $\sum_{i} h_{i} f_{i}=0$. We want to show that $\sum_{i} h_{i} g_{i} \in I$. To see this, let $g=\sum_{i} h_{i}\left(f_{i}+\epsilon g_{i}\right)$.
Then $g=\epsilon\left(\sum_{i} h_{i} g_{i}\right)$ and $g \in J$. Therefore, $\sum_{i} h_{i} g_{i} \in J: \epsilon$. Since $C$ is a flat $K[\epsilon]$-module, there exists $p \in S$ such that $\sum_{i} h_{i} g_{i}-\epsilon p \in J$. Modulo $\epsilon$ it follows that $\sum_{i} h_{i} g_{i} \in I$.
The converse direction is proved similarly. $\square$
The proposition says that the infinitesimal deformations of $S / I$ are in bijection to the elements of $I^{*}=\operatorname{Hom}_{S}(I, S / I)$.
Let $C=S[\epsilon] / J$ be an infinitesimal deformation of $S / I$. Then this deformation is trivial if and only if there a $K[\epsilon]$-automorphism $\varphi: S[\epsilon] \rightarrow S[\epsilon]$ such that $\varphi(J)=I S[\epsilon]$.

Let $\operatorname{Der}_{K}(S)$ be the $S$-module of $K$-derivations $\partial: S \rightarrow S$ of $S$.

Let $\operatorname{Der}_{K}(S)$ be the $S$-module of $K$-derivations $\partial: S \rightarrow S$ of $S$.
Proposition. The infinitesimal deformation $S[\epsilon] / J$ of $S / I$ is trivial if and only if there exists $\partial \in \operatorname{Der}_{K}(S)$ such that $J=\left(f_{1}+\partial f_{1} \epsilon, \ldots, f_{m}+\partial f_{m} \epsilon\right)$.

Let $\operatorname{Der}_{K}(S)$ be the $S$-module of $K$-derivations $\partial: S \rightarrow S$ of $S$.
Proposition. The infinitesimal deformation $S[\epsilon] / J$ of $S / I$ is trivial if and only if there exists $\partial \in \operatorname{Der}_{K}(S)$ such that $J=\left(f_{1}+\partial f_{1} \epsilon, \ldots, f_{m}+\partial f_{m} \epsilon\right)$.

Proof. We show: suppose there exists $\partial \in \operatorname{Der}_{K}(S)$ with $J=\left(f_{1}+\partial f_{1} \epsilon, \ldots, f_{m}+\partial f_{m} \epsilon\right)$, then the deformation is trivial.

Let $\operatorname{Der}_{K}(S)$ be the $S$-module of $K$-derivations $\partial: S \rightarrow S$ of $S$.
Proposition. The infinitesimal deformation $S[\epsilon] / J$ of $S / I$ is trivial if and only if there exists $\partial \in \operatorname{Der}_{K}(S)$ such that $J=\left(f_{1}+\partial f_{1} \epsilon, \ldots, f_{m}+\partial f_{m} \epsilon\right)$.

Proof. We show: suppose there exists $\partial \in \operatorname{Der}_{K}(S)$ with $J=\left(f_{1}+\partial f_{1} \epsilon, \ldots, f_{m}+\partial f_{m} \epsilon\right)$, then the deformation is trivial.

We define the $K[\epsilon]$-algebra automorphism $\varphi: S[\epsilon] \rightarrow S[\epsilon]$ with $x_{i} \mapsto x_{i}+\partial x_{i} \epsilon$.

Let $\operatorname{Der}_{K}(S)$ be the $S$-module of $K$-derivations $\partial: S \rightarrow S$ of $S$.
Proposition. The infinitesimal deformation $S[\epsilon] / J$ of $S / I$ is trivial if and only if there exists $\partial \in \operatorname{Der}_{K}(S)$ such that $J=\left(f_{1}+\partial f_{1} \epsilon, \ldots, f_{m}+\partial f_{m} \epsilon\right)$.

Proof. We show: suppose there exists $\partial \in \operatorname{Der}_{K}(S)$ with $J=\left(f_{1}+\partial f_{1} \epsilon, \ldots, f_{m}+\partial f_{m} \epsilon\right)$, then the deformation is trivial.

We define the $K[\epsilon]$-algebra automorphism $\varphi: S[\epsilon] \rightarrow S[\epsilon]$ with $x_{i} \mapsto x_{i}+\partial x_{i} \epsilon$.

Then

$$
\begin{aligned}
\varphi\left(\prod_{i=1}^{n} x_{i}^{a_{i}}\right) & =\prod_{i=1}^{n}\left(x_{i}+\partial x_{i} \epsilon\right)^{a_{i}}=\prod_{i=1}^{n}\left(x_{i}^{a_{i}}+a_{i} x_{i}^{a_{i}-1} \partial x_{i} \epsilon\right) \\
& =\prod_{i=1}^{n} x_{i}^{a_{i}}+\sum_{i=1}^{n} a_{i} x_{i}^{a_{i}-1} \partial x_{i} \prod_{j \neq i} x_{j}^{a_{j}} \epsilon \\
& =\prod_{i=1}^{n} x_{i}^{a_{i}}+\partial\left(\prod_{i=1}^{n} x_{i}^{a_{i}}\right) \epsilon
\end{aligned}
$$

Since $\varphi$ and $\partial$ are $K$-linear, it follows that $\varphi\left(f_{i}\right)=f_{i}+\partial f_{i} \epsilon$ for all $i$. Therefore, $\varphi^{-1}(J)=I S[\epsilon]$. $\square$

Since $\varphi$ and $\partial$ are $K$-linear, it follows that $\varphi\left(f_{i}\right)=f_{i}+\partial f_{i} \epsilon$ for all $i$. Therefore, $\varphi^{-1}(J)=I S[\epsilon]$. $\square$

As a consequence of our considerations so far we see the following: if we consider the natural map $\delta^{*}: \operatorname{Der}_{K}(S) \rightarrow I^{*}$ which assigns to $\partial \in \operatorname{Der}_{K}(S)$ the element $\delta^{*}(\partial)$ with

$$
\delta^{*}(\partial)\left(f_{i}\right)=\partial f_{i}+I,
$$

then the non-zero elements of Coker $\delta^{*}$ are in bijection to the isomorphism classes of non-trivial infinitesimal deformations of $S / I$.

Since $\varphi$ and $\partial$ are $K$-linear, it follows that $\varphi\left(f_{i}\right)=f_{i}+\partial f_{i} \epsilon$ for all i. Therefore, $\varphi^{-1}(J)=I S[\epsilon]$. $\square$

As a consequence of our considerations so far we see the following: if we consider the natural map $\delta^{*}: \operatorname{Der}_{K}(S) \rightarrow I^{*}$ which assigns to $\partial \in \operatorname{Der}_{K}(S)$ the element $\delta^{*}(\partial)$ with

$$
\delta^{*}(\partial)\left(f_{i}\right)=\partial f_{i}+I,
$$

then the non-zero elements of Coker $\delta^{*}$ are in bijection to the isomorphism classes of non-trivial infinitesimal deformations of $S / I$.
This cokernel is denoted by $T^{1}(S / I)$ and is called the first cotangent module of $S / I$.

For any $B$-algebra homomorphism $B \rightarrow A$, there exist functors $T^{i}(A / B, M)$ and $T_{i}(A / B, M)$ for $i=0,1, \ldots$ the so-called tangent and cotangent functors. They are functor in all three variables.

For any $B$-algebra homomorphism $B \rightarrow A$, there exist functors $T^{i}(A / B, M)$ and $T_{i}(A / B, M)$ for $i=0,1, \ldots$ the so-called tangent and cotangent functors. They are functor in all three variables.

Lichtenbaum and Schlessinger 1967 first introduced the functors $T^{i}$ for $i=0,1,2$ in the paper "On the cotangent complex of a morphism" TransAMS.

For any $B$-algebra homomorphism $B \rightarrow A$, there exist functors $T^{i}(A / B, M)$ and $T_{i}(A / B, M)$ for $i=0,1, \ldots$ the so-called tangent and cotangent functors. They are functor in all three variables.

Lichtenbaum and Schlessinger 1967 first introduced the functors $T^{i}$ for $i=0,1,2$ in the paper "On the cotangent complex of a morphism" TransAMS.

Quillen (Proc. Symp. Pure Math, 1970) and independently André (Homologie des algebres commutatives) defined the higher cotangent functors and developed their theory.

For any $B$-algebra homomorphism $B \rightarrow A$, there exist functors $T^{i}(A / B, M)$ and $T_{i}(A / B, M)$ for $i=0,1, \ldots$ the so-called tangent and cotangent functors. They are functor in all three variables.

Lichtenbaum and Schlessinger 1967 first introduced the functors $T^{i}$ for $i=0,1,2$ in the paper "On the cotangent complex of a morphism" TransAMS.

Quillen (Proc. Symp. Pure Math, 1970) and independently André (Homologie des algebres commutatives) defined the higher cotangent functors and developed their theory.

In characteristic 0, a different (and simpler approach) is given by Palamadov (Deformations of complex spaces) by using DGA algebras.
$T^{1}(S / I)$ is a finitely generated graded (multigraded) $S$-module, if $S / I$ is graded (multigraded).
$T^{1}(S / I)$ is a finitely generated graded (multigraded) $S$-module, if $S / I$ is graded (multigraded).
$S / I$ is rigid, if $S / I$ admits no infinitesimal deformations, and this is the case if and only if $T^{1}(S / I)=0$.
$T^{1}(S / I)$ is a finitely generated graded (multigraded) $S$-module, if $S / I$ is graded (multigraded).
$S / I$ is rigid, if $S / I$ admits no infinitesimal deformations, and this is the case if and only if $T^{1}(S / I)=0$.
Example: Let $I=(x y, x z, y z) \subset S=K[x, y, z]$, and $L=(x w, x z, y z) \subset T=K[x, y, z, w]$.
$T^{1}(S / I)$ is a finitely generated graded (multigraded) $S$-module, if $S / I$ is graded (multigraded).
$S / I$ is rigid, if $S / I$ admits no infinitesimal deformations, and this is the case if and only if $T^{1}(S / I)=0$.
Example: Let $I=(x y, x z, y z) \subset S=K[x, y, z]$, and $L=(x w, x z, y z) \subset T=K[x, y, z, w]$.

Then $t:=w-y$ is a non-zerodivisor of $T / L$. Thus $K[t] \rightarrow T / L$ is flat, and hence $T / L \otimes K[\epsilon]$ with $K[\epsilon]=K[t] /\left(t^{2}\right)$ is an infinitesimal deformation of $S / I$.
$T^{1}(S / I)$ is a finitely generated graded (multigraded) $S$-module, if $S / I$ is graded (multigraded).
$S / I$ is rigid, if $S / I$ admits no infinitesimal deformations, and this is the case if and only if $T^{1}(S / I)=0$.
Example: Let $I=(x y, x z, y z) \subset S=K[x, y, z]$, and $L=(x w, x z, y z) \subset T=K[x, y, z, w]$.
Then $t:=w-y$ is a non-zerodivisor of $T / L$. Thus $K[t] \rightarrow T / L$ is flat, and hence $T / L \otimes K[\epsilon]$ with $K[\epsilon]=K[t] /\left(t^{2}\right)$ is an infinitesimal deformation of $S / I$.

We have $T=K[x, y, z, t]$ and $L=(x y+x t, x z, y z)$, and hence $T / L \otimes K[\epsilon] \simeq S[\epsilon] /(x y+x \epsilon, x z, y z)$.

Is $S[\epsilon] /(x y+x \epsilon, x z, y z)$ a non-trivial deformation of $S / I$ ?

Is $S[\epsilon] /(x y+x \epsilon, x z, y z)$ a non-trivial deformation of $S / I$ ?
Suppose it is trivial. Then there exists $\partial \in \operatorname{Der}_{K}(S)$ with $\partial(x y)=x$ and $\partial(x z)=\partial(y z)=0$.

Is $S[\epsilon] /(x y+x \epsilon, x z, y z)$ a non-trivial deformation of $S / I$ ?
Suppose it is trivial. Then there exists $\partial \in \operatorname{Der}_{K}(S)$ with $\partial(x y)=x$ and $\partial(x z)=\partial(y z)=0$.

The module $\operatorname{Der}_{K}(S)$ is a free $S$-module with basis $\partial_{x}, \partial_{y}, \partial_{z}$.

Is $S[\epsilon] /(x y+x \epsilon, x z, y z)$ a non-trivial deformation of $S / I$ ?
Suppose it is trivial. Then there exists $\partial \in \operatorname{Der}_{K}(S)$ with $\partial(x y)=x$ and $\partial(x z)=\partial(y z)=0$.

The module $\operatorname{Der}_{K}(S)$ is a free $S$-module with basis $\partial_{x}, \partial_{y}, \partial_{z}$.
Let $\partial=f \partial_{x}+g \partial_{y}+h \partial_{z}$. Then $x=\partial(x y)=f y+g x$, and hence $f=0$ and $g=1$. Furthermore, $0=\partial(y z)=f z+g x=g x$, and hence $g=0$, a contradiction.

Is $S[\epsilon] /(x y+x \epsilon, x z, y z)$ a non-trivial deformation of $S / I$ ?
Suppose it is trivial. Then there exists $\partial \in \operatorname{Der}_{K}(S)$ with $\partial(x y)=x$ and $\partial(x z)=\partial(y z)=0$.

The module $\operatorname{Der}_{K}(S)$ is a free $S$-module with basis $\partial_{x}, \partial_{y}, \partial_{z}$.
Let $\partial=f \partial_{x}+g \partial_{y}+h \partial_{z}$. Then $x=\partial(x y)=f y+g x$, and hence $f=0$ and $g=1$. Furthermore, $0=\partial(y z)=f z+g x=g x$, and hence $g=0$, a contradiction.
The calculations show that $T^{1}(S / I)_{-1} \neq 0$.

Let $R=S / I, I \subset S$ a graded ideal, $M$ a graded $R$-module.

Let $R=S / I, I \subset S$ a graded ideal, $M$ a graded $R$-module.
A $K$-derivation $\delta: R \rightarrow M$ is a $K$-linear map such that

$$
\delta(r s)=r \delta(s)+s \delta(r) \quad \text { for all } r, s \in R .
$$

Let $R=S / I, I \subset S$ a graded ideal, $M$ a graded $R$-module.
A $K$-derivation $\delta: R \rightarrow M$ is a $K$-linear map such that

$$
\delta(r s)=r \delta(s)+s \delta(r) \quad \text { for all } r, s \in R .
$$

The module of differentials $\Omega_{R / K}$ is defined by the universal property that there exists a $K$-derivation $d: R \rightarrow \Omega_{R / K}$ such that for any derivation $\delta: R \rightarrow M$ there exists an $R$-module homomorphism $\varphi: \Omega_{R / K} \rightarrow M$ such that

$$
\partial=\varphi \circ d
$$

Let $I=\left(f_{1}, \ldots, f_{m}\right)$. Then

Let $I=\left(f_{1}, \ldots, f_{m}\right)$. Then

$$
\Omega_{R / K} \simeq \bigoplus_{i=1}^{n} R d x_{i} / U
$$

where $U$ is generated by the elements $\sum_{i=1}^{n} \overline{\partial_{i} f_{j}} d x_{i}$ for $j=1, \ldots, m$.

Let $I=\left(f_{1}, \ldots, f_{m}\right)$. Then

$$
\Omega_{R / K} \simeq \bigoplus_{i=1}^{n} R d x_{i} / U
$$

where $U$ is generated by the elements $\sum_{i=1}^{n} \overline{\partial_{i} f_{j}} d x_{i}$ for $j=1, \ldots, m$.

Thus the relation matrix of $\Omega_{R / K}$ is the Jacobian matrix.

There is the fundamental exact sequence of $R$-modules

$$
I / I^{2} \rightarrow \bigoplus_{i=1}^{n} R d x_{i} \rightarrow \Omega_{R / K} \rightarrow 0
$$

where $\delta: I / I^{2} \rightarrow \bigoplus_{i=1}^{n} R d x_{i}$ is the $R$-linear map

$$
f+I^{2} \mapsto \sum_{i=1}^{n} \overline{\partial_{i} f} d x_{i}
$$

There is the fundamental exact sequence of $R$-modules

$$
I / I^{2} \rightarrow \bigoplus_{i=1}^{n} R d x_{i} \rightarrow \Omega_{R / K} \rightarrow 0
$$

where $\delta: I / I^{2} \rightarrow \bigoplus_{i=1}^{n} R d x_{i}$ is the $R$-linear map

$$
f+I^{2} \mapsto \sum_{i=1}^{n} \overline{\partial_{i} f} d x_{i}
$$

For an $R$-module $M$ we set $M^{*}=\operatorname{Hom}_{R}(M, R)$.

There is the fundamental exact sequence of $R$-modules

$$
I / I^{2} \rightarrow \bigoplus_{i=1}^{n} R d x_{i} \rightarrow \Omega_{R / K} \rightarrow 0
$$

where $\delta: I / I^{2} \rightarrow \bigoplus_{i=1}^{n} R d x_{i}$ is the $R$-linear map

$$
f+I^{2} \mapsto \sum_{i=1}^{n} \overline{\partial_{i} f} d x_{i}
$$

For an $R$-module $M$ we set $M^{*}=\operatorname{Hom}_{R}(M, R)$.
By dualizing, the fundamental exact sequence yields the exact sequence

$$
\delta^{*}: \bigoplus_{i=1}^{n} R \partial_{i} \rightarrow\left(I / I^{2}\right)^{*} \rightarrow T^{1}(R) \rightarrow 0
$$

In general, the map $\delta: I / I^{2} \rightarrow \bigoplus_{i=1}^{n} R d x_{i}$ is not injective.

In general, the map $\delta: I / I^{2} \rightarrow \bigoplus_{i=1}^{n} R d x_{i}$ is not injective.
Let $V=\operatorname{Ker} \delta$. If $R$ is reduced and $K$ is a perfect field, then Supp $V \cap \operatorname{Ass}(R)=\emptyset$, and hence $V^{*}=\operatorname{Hom}_{R}(V, R)=0$.

In general, the map $\delta: I / I^{2} \rightarrow \bigoplus_{i=1}^{n} R d x_{i}$ is not injective.
Let $V=\operatorname{Ker} \delta$. If $R$ is reduced and $K$ is a perfect field, then Supp $V \cap \operatorname{Ass}(R)=\emptyset$, and hence $V^{*}=\operatorname{Hom}_{R}(V, R)=0$.

Therefore, by dualizing the exact sequence

$$
0 \rightarrow V \rightarrow I / I^{2} \rightarrow U \rightarrow 0
$$

we obtain that $U^{*}=\left(I / I^{2}\right)^{*}$.

In general, the map $\delta: I / I^{2} \rightarrow \bigoplus_{i=1}^{n} R d x_{i}$ is not injective.
Let $V=\operatorname{Ker} \delta$. If $R$ is reduced and $K$ is a perfect field, then Supp $V \cap \operatorname{Ass}(R)=\emptyset$, and hence $V^{*}=\operatorname{Hom}_{R}(V, R)=0$.

Therefore, by dualizing the exact sequence

$$
0 \rightarrow V \rightarrow I / I^{2} \rightarrow U \rightarrow 0
$$

we obtain that $U^{*}=\left(I / I^{2}\right)^{*}$. Now the fundamental exact sequence yields

$$
\begin{aligned}
\operatorname{Ext}_{R}^{1}\left(\Omega_{R / K}, R\right) & =\operatorname{Coker}\left(\bigoplus_{i=1}^{n} R \partial_{i} \rightarrow U^{*}\right) \\
& =\operatorname{Coker}\left(\bigoplus_{i=1}^{n} R \partial_{i} \rightarrow\left(I / I^{2}\right)^{*}\right)=T^{1}(R)
\end{aligned}
$$

## Separation

Let $I \subseteq S$ be a monomial ideal, and let $y$ be an indeterminate over $S$. Fløystad calls a monomial ideal $J \subseteq S[y]$ an $i$-separation of $I$, if the following conditions hold:

## Separation

Let $I \subseteq S$ be a monomial ideal, and let $y$ be an indeterminate over $S$. Fløystad calls a monomial ideal $J \subseteq S[y]$ an $i$-separation of $I$, if the following conditions hold:
(i) the ideal $I$ is the image of $J$ under the $K$-algebra homomorphism $S[y] \rightarrow S$ with $y \mapsto x_{i}$ and $x_{j} \mapsto x_{j}$ for all $1 \leq j \leq n ;$

## Separation

Let $I \subseteq S$ be a monomial ideal, and let $y$ be an indeterminate over $S$. Fløystad calls a monomial ideal $J \subseteq S[y]$ an $i$-separation of $I$, if the following conditions hold:
(i) the ideal $I$ is the image of $J$ under the $K$-algebra homomorphism $S[y] \rightarrow S$ with $y \mapsto x_{i}$ and $x_{j} \mapsto x_{j}$ for all $1 \leq j \leq n ;$
(ii) $x_{i}$ and $y$ divide some minimal generators of $J$;

## Separation

Let $I \subseteq S$ be a monomial ideal, and let $y$ be an indeterminate over $S$. Fløystad calls a monomial ideal $J \subseteq S[y]$ an $i$-separation of $I$, if the following conditions hold:
(i) the ideal $I$ is the image of $J$ under the $K$-algebra homomorphism $S[y] \rightarrow S$ with $y \mapsto x_{i}$ and $x_{j} \mapsto x_{j}$ for all

$$
1 \leq j \leq n ;
$$

(ii) $x_{i}$ and $y$ divide some minimal generators of $J$;
(iii) $y-x_{i}$ is a non-zero divisor of $S[y] / J$.

## Separation

Let $I \subseteq S$ be a monomial ideal, and let $y$ be an indeterminate over $S$. Fløystad calls a monomial ideal $J \subseteq S[y]$ an $i$-separation of $I$, if the following conditions hold:
(i) the ideal $I$ is the image of $J$ under the $K$-algebra homomorphism $S[y] \rightarrow S$ with $y \mapsto x_{i}$ and $x_{j} \mapsto x_{j}$ for all $1 \leq j \leq n ;$
(ii) $x_{i}$ and $y$ divide some minimal generators of $J$;
(iii) $y-x_{i}$ is a non-zero divisor of $S[y] / J$.

The ideal $/$ is called separable if it admits an $i$-separation, otherwise it is called inseparable.

## Separation

Let $I \subseteq S$ be a monomial ideal, and let $y$ be an indeterminate over $S$. Fløystad calls a monomial ideal $J \subseteq S[y]$ an $i$-separation of $I$, if the following conditions hold:
(i) the ideal $I$ is the image of $J$ under the $K$-algebra homomorphism $S[y] \rightarrow S$ with $y \mapsto x_{i}$ and $x_{j} \mapsto x_{j}$ for all $1 \leq j \leq n ;$
(ii) $x_{i}$ and $y$ divide some minimal generators of $J$;
(iii) $y-x_{i}$ is a non-zero divisor of $S[y] / J$.

The ideal $/$ is called separable if it admits an $i$-separation, otherwise it is called inseparable.

For example $I=\left(x_{1} x_{2}, x_{1} x_{3}, x_{2} x_{3}\right)$ admits the 2 -separation $J=\left(x_{1} y, x_{1} x_{3}, x_{2} x_{3}\right)$.

## Separation

Let $I \subseteq S$ be a monomial ideal, and let $y$ be an indeterminate over $S$. Fløystad calls a monomial ideal $J \subseteq S[y]$ an $i$-separation of $I$, if the following conditions hold:
(i) the ideal $I$ is the image of $J$ under the $K$-algebra homomorphism $S[y] \rightarrow S$ with $y \mapsto x_{i}$ and $x_{j} \mapsto x_{j}$ for all $1 \leq j \leq n ;$
(ii) $x_{i}$ and $y$ divide some minimal generators of $J$;
(iii) $y-x_{i}$ is a non-zero divisor of $S[y] / J$.

The ideal $/$ is called separable if it admits an $i$-separation, otherwise it is called inseparable.

For example $I=\left(x_{1} x_{2}, x_{1} x_{3}, x_{2} x_{3}\right)$ admits the 2 -separation $J=\left(x_{1} y, x_{1} x_{3}, x_{2} x_{3}\right)$.
Separations are unobstructed deformations of monomial ideals which preserve the monomial structure.

Proposition. Let / be a squarefree monomial ideal, and let $J$ be an $i$-separation of $I$. Then $T^{1}(S / I)_{-\epsilon_{i}} \neq 0$.

Proposition. Let / be a squarefree monomial ideal, and let $J$ be an $i$-separation of $I$. Then $T^{1}(S / I)_{-\epsilon_{i}} \neq 0$.

Proof: By condition (iii), $S / I$ is obtained from $S[y] / J$ by reduction modulo a linear form which is a regular element on $S[y] / J$. This implies that $I$ and $J$ are minimally generated by the same number of generators.

Proposition. Let / be a squarefree monomial ideal, and let $J$ be an $i$-separation of $I$. Then $T^{1}(S / I)_{-\epsilon_{i}} \neq 0$.

Proof: By condition (iii), $S / I$ is obtained from $S[y] / J$ by reduction modulo a linear form which is a regular element on $S[y] / J$. This implies that $I$ and $J$ are minimally generated by the same number of generators.

Let $J$ be minimally generated by $v_{1}, \ldots, v_{m}$. We may assume that $y$ divides $v_{1}, \ldots, v_{k}$ but does not divide the other generators of $J$. We may furthermore assume that for all $i, v_{i}$ is mapped to $u_{i}$ under the $K$-algebra homomorphism (i).

Proposition. Let / be a squarefree monomial ideal, and let $J$ be an $i$-separation of $I$. Then $T^{1}(S / I)_{-\epsilon_{i}} \neq 0$.

Proof: By condition (iii), $S / I$ is obtained from $S[y] / J$ by reduction modulo a linear form which is a regular element on $S[y] / J$. This implies that $I$ and $J$ are minimally generated by the same number of generators.

Let $J$ be minimally generated by $v_{1}, \ldots, v_{m}$. We may assume that $y$ divides $v_{1}, \ldots, v_{k}$ but does not divide the other generators of $J$. We may furthermore assume that for all $i, v_{i}$ is mapped to $u_{i}$ under the $K$-algebra homomorphism (i).

Then we may write
$J=\left(u_{1}+\left(u_{1} / x_{i}\right)\left(y-x_{i}\right), \ldots, u_{k}+\left(u_{k} / x_{i}\right)\left(y-x_{i}\right), u_{k+1}, \ldots, u_{m}\right)$.
From this presentation and by (iii) it follows that $S[y] / J$ is an unobstructed deformation of $S / I$ induced by the element $[\varphi] \in T^{1}(S / I)_{-\epsilon_{i}}$, where $\varphi \in I^{*}$ is the $S$-module homomorphism with $\varphi\left(u_{j}\right)=u_{j} / x_{i}+I$ for $j=1, \ldots, k$ and $\varphi\left(u_{j}\right)=0$, otherwise.

Condition (ii) makes sure that $S[y] / J$ is a non-trivial deformation of $S / I$.

Condition (ii) makes sure that $S[y] / J$ is a non-trivial deformation of $S / I$.

Corollary. The monomial ideal $I$ is inseparable if $T^{1}(S / I)_{-\epsilon_{i}}=0$ for all $i$.

Condition (ii) makes sure that $S[y] / J$ is a non-trivial deformation of $S / I$.

Corollary. The monomial ideal $I$ is inseparable if $T^{1}(S / I)_{-\epsilon_{i}}=0$ for all $i$.

If $J$ is an ideal which is obtained from $/$ by a finite number of separation steps, then we say that $J$ specializes to $I$. If moreover, $J$ is inseparable, then $J$ is called an inseparable model of $I$.

Condition (ii) makes sure that $S[y] / J$ is a non-trivial deformation of $S / I$.

Corollary. The monomial ideal $I$ is inseparable if $T^{1}(S / I)_{-\epsilon_{i}}=0$ for all $i$.

If $J$ is an ideal which is obtained from $/$ by a finite number of separation steps, then we say that $J$ specializes to $I$. If moreover, $J$ is inseparable, then $J$ is called an inseparable model of $I$.

Each monomial ideal admits an inseparable model, but in general not only one.

Condition (ii) makes sure that $S[y] / J$ is a non-trivial deformation of $S / I$.

Corollary. The monomial ideal $I$ is inseparable if $T^{1}(S / I)_{-\epsilon_{i}}=0$ for all $i$.

If $J$ is an ideal which is obtained from $/$ by a finite number of separation steps, then we say that $J$ specializes to $I$. If moreover, $J$ is inseparable, then $J$ is called an inseparable model of $I$.

Each monomial ideal admits an inseparable model, but in general not only one.

For example, $J=\left(x_{1} y, x_{1} x_{3}, x_{2} x_{3}\right)$ is an inseparable model of $I=\left(x_{1} x_{2}, x_{1} x_{3}, x_{2} x_{3}\right)$.

Problem 1. Let $I=\left(x_{1} x_{2}, x_{2} x_{3}, x_{3} x_{4}\right) \subset K\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$. Show that $S / I$ is not rigid.

Problem 2. Let $I \subset S$ be a graded ideal, and assume that $K$ is a perfect field and that $R=S / I$ is a reduced CM ring. Then $R$ is rigid if and only if $\Omega_{R / K} \otimes \omega_{R}$ is $C M$.
Problem 3. Let $I \subset S$ be a graded ideal, and assume that $K$ is a perfect field and that $R=S / I$ is a 1 -dimensional reduced Gorenstein ring. Then $R$ is rigid if and only if $\Omega_{R / K}$ is torsionfree.
Problem 4. Find an inseparable monomial ideal which is not rigid.

