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According Fløystad and Vatne, a squarefree monomial ideal I ⊂ S

is called bi-Cohen-Macaulay (or simply bi-CM) if I as well as its
Alexander dual I∨ of I is a Cohen-Macaulay ideal. A graph G is
called Cohen-Macaulay or bi-Cohen-Macaulay (over K )(CM or
bi-CM for short), if I(G) is CM or bi-CM.

One important result regarding the Alexander dual that we will
frequently use, is the Eagon-Reiner theorem which says that I is a
Cohen-Macaulay ideal if and only if I∨ has a linear resolution.

Thus the Eagon-Reiner theorem implies that I is bi-CM if and only
if I is a Cohen-Macaulay ideal with linear resolution.
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free resolution of S/I(G) is obtained as the tensor product of the
resolutions of S/I(G1) and S/I(G2). This implies that I(G) has
relations of degree 4, so that I(G) does not have a linear resolution.

A subset C ⊂ [n] is called a vertex cover of G if C ∩ {i , j} 6= ∅ for
all edges {i , j} of G . The graph G is called unmixed if all minimal
vertex covers of G have the same cardinality.

Let C ⊂ [n]. Then the monomial prime ideal PC = ({xi : i ∈ C})
is a minimal prime ideal of I(G) if and only if C is a minimal vertex
cover of G . Thus G is unmixed if and only if I(G) is unmixed in
the algebraic sense.
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Proposition. Let G be a graph on the vertex set [n] with
independence number c . The following conditions are equivalent:

(a) G is a bi-CM graph over K ;

(b) G is a CM graph over K and |E (G)| =
(n−c+1

2

)

;

(c) G is a CM graph over K and the number of minimal vertex
covers of G is equal to n − c + 1;

(d) βi (IG) = (i + 1)
(n−c+1

i+2

)

for i = 0, . . . , n − c − 1.
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G is bi-CM if and only if the number of generators of J is equal to
(n−c+1

2

)

. Since IG and J have the same number of generators and
since the number of generators of IG is equal to |E (G)|, the
assertion follows.

(b)⇔ (c): Since S/IG is Cohen-Macaulay, the multiplicity of S/IG
is equal to the length `(T/J) of T/J . On the other hand, the
multiplicity is also the number of minimal prime ideals of IG which
coincides with the number of minimal vertex covers of G . Thus the
length of T/J is equal to the number of minimal vertex covers of
G . Since J = m

2

T if and only if `(T/J) = n − c + 1, the assertion
follows.



(a)⇒ (d): Note that βi (IG) = βi(J) for all i . Since J is isomorphic
to the ideal of 2-minors of the matrix

(

y1 y2 . . . yn−c 0
0 y1 . . . yn−c−1 yn−c
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in the variables y1, . . . , yn−c , the Eagon-Northcott complex
provides a free resolution of J , and the desired result follows.



(a)⇒ (d): Note that βi (IG) = βi(J) for all i . Since J is isomorphic
to the ideal of 2-minors of the matrix

(

y1 y2 . . . yn−c 0
0 y1 . . . yn−c−1 yn−c

)

in the variables y1, . . . , yn−c , the Eagon-Northcott complex
provides a free resolution of J , and the desired result follows.

(d)⇒ (a): It follows from the description of the Betti numbers of
IG that proj dim S/IG = n − c . Thus, depth S/IG = c . Since
dim S/IG = c , it follows that IG is a Cohen-Macaulay ideal. Since
|E (G)| = β0(IG ) =

(n−c+1

2

)

, condition (b) is satisfied, and hence G

is bi-CM, as desired. �
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V2 = {w1, . . . , wm}. Then the following conditions are equivalent:

(a) G is a bi-CM graph;

(b) n = m and E (G) = {{vi , wj} 1 ≤ i ≤ j ≤ n}.
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Theorem. Let G be a bipartite graph on the vertex set V with
bipartition V = V1 ∪ V2 where V1 = {v1, . . . , vn} and
V2 = {w1, . . . , wm}. Then the following conditions are equivalent:

(a) G is a bi-CM graph;

(b) n = m and E (G) = {{vi , wj} 1 ≤ i ≤ j ≤ n}.

The following picture shows a bi-CM bipartite graph for n = 4.

•

•

•

•

•

•

•

•
x1 x2 x3 x4

y1 y2 y3 y4

Figure: A bi-CM bipartite graph.
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i , j ∈ F with i 6= j . The set of all cliques of G is a simplicial
complex, denoted ∆(G).

Theorem.Let G be a chordal graph on the vertex set [n]. The
following conditions are equivalent:

(a) G is a bi-CM graph;

(b) Let F1, . . . , Fm be the facets of the clique complex of G with
a free vertex. Then m = 1,
or m > 1 and

(i) V (G) = V (F1) ∪ V (F2) ∪ . . . ∪ V (Fm), and this union is
disjoint;

(ii) each Fi has exactly one free vertex ji ;
(iii) the restriction of G to [n] \ {j1, . . . , jm} is a clique.



The following picture shows, up to isomorphism, all bi-CM chordal
graphs whose center is the complete graph K4 on 4 vertices:
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We say that G is inseparable, if I(G) is inseparable.

When is a graph inseparable and what are the separable models of
a graph?

• •

•

x1

x3

x2

•

•

•

•

x1

x3

x2

y

Figure: A triangle and one of its inseparable models
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Generic Bi-CM graphs

Let T be a tree on the vertex set [n], and let i and j be any two
vertices of the tree T .

There exists a unique path P : i = i0, i1, . . . , ir = j from i to j .

We set b(i , j) = i1 and call b(i , j) the begin of P, and set
e(i , j) = ir−1 and call e(i , j) the end of P.

We now define the generic graph GT associated with T whose
vertex set is

V (GT ) = {(i , j), (j , i) : {i , j} is an edge of T}.

and with {(i , k), (j , l)} ∈ E (GT ) if and only if there exists a path
P from i to j such that k = b(i , j) and l = e(i , j).



• • •
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The generic graph of T .

• •

•

•

• •
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x41 x31
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x21
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Theorem. (H-Rahimi) (a) Let T be a tree. Then GT is an
inseparable Bi-CM graph.

(b) For any inseparable Bi-CM graph G , there exists a unique tree
T such that G ' GT .

(c) Let G be any Bi-CM graph. Then there exists a tree T such
that GT is an inseparable model of G .

(d) The finitely many trees T for which GT is an inseparable
model of G can all be determined by considering the Alexander
dual I(G)∨ of I(G), and the relation trees of I(G)∨.



The proof of the theorem needs several steps.



The proof of the theorem needs several steps.

As we noticed before, the Alexander dual J = I(G)∨ of the edge
ideal of a bi-CM graph G is a Cohen–Macaulay ideal of
codimension 2 with linear resolution. The ideal J may have several
distinct relation matrices with respect to the unique minimal set of
monomial generators of J .



The proof of the theorem needs several steps.

As we noticed before, the Alexander dual J = I(G)∨ of the edge
ideal of a bi-CM graph G is a Cohen–Macaulay ideal of
codimension 2 with linear resolution. The ideal J may have several
distinct relation matrices with respect to the unique minimal set of
monomial generators of J .

As shown in the paper "On multigraded resolutions"
(Bruns-Herzog), one may attach to each of the relation matrices A

of J a tree Γ, the so-called relation tree of A, as follows:
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As we noticed before, the Alexander dual J = I(G)∨ of the edge
ideal of a bi-CM graph G is a Cohen–Macaulay ideal of
codimension 2 with linear resolution. The ideal J may have several
distinct relation matrices with respect to the unique minimal set of
monomial generators of J .

As shown in the paper "On multigraded resolutions"
(Bruns-Herzog), one may attach to each of the relation matrices A

of J a tree Γ, the so-called relation tree of A, as follows:

Let u1, . . . , um+1 be the unique minimal set of monomial
generators of J . Because J has a linear resolution, the generating
relations of J may be chosen all of the form xkui − xluj = 0. This
implies that in each row of the m × (m + 1)-relation matrix A

there are exactly two non-zero entries (which are variables with
different signs). We call such relations, relations of binomial type.



Consider the bi-CM graph G on the vertex set [5] and edges {1, 2}
{2, 3}, {3, 1}, {2, 4}, {3, 4}, {4, 5}.

•

•

•

• •x1

x2

x3

x4 x5

The ideal J = I∨

G is generated by u1 = x2x3x4, u2 = x1x3x4,
u3 = x2x3x5 and u4 = x1x2x4. The relation matrices with respect
to u1, u2, u3 and u4 are the matrices

A1 =







x1 −x2 0 0
x5 0 −x4 0
x1 0 0 −x3






,

and

A2 =







x1 −x2 0 0
x5 0 −x4 0
0 x2 0 −x3






.





In the above example the relation tree of A1 is

• • •

•

x4 x1 x2

x3

while the relation tree of A2 is

• • • •
x3 x1 x2 x4



Conversely, we now define for any given tree T on the vertex set
[m + 1] with edges e1, . . . , em the m × (m + 1)-matrix AT whose
entries akl are defined as follows:
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ek = {i , j} of T with i < j the kth row of AT by setting

akl =











xij , if l = i ,
−xji , if l = j ,
0, otherwise.

The matrix AT is called the generic matrix attached to the tree T .



Conversely, we now define for any given tree T on the vertex set
[m + 1] with edges e1, . . . , em the m × (m + 1)-matrix AT whose
entries akl are defined as follows: we assign to the kth edge
ek = {i , j} of T with i < j the kth row of AT by setting

akl =











xij , if l = i ,
−xji , if l = j ,
0, otherwise.

The matrix AT is called the generic matrix attached to the tree T .

By the Hilbert-Burch theorem, the matrix AT is the relation matrix
of the ideal JT of maximal minors of AT , and JT is a
Cohen-Macaulay ideal of codimension 2 with linear resolution.
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Naeem showed: the minors of AT (which are the generators of JT )
are the monomials

m+1
∏

i=1

i 6=j

xib(i ,j) (j = 1, . . . , m + 1),

and

J∨

T = (xib(i ,j)xje(i ,j) : 1 ≤ i < j ≤ m + 1).

Hence J∨

T = I(GT ) where GT is the generic graph defined before.

This shows that GT is a bi-CM graph.
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In order to see that GT is inseparable, we apply the following
criterion: let G be a graph on the vertex set [n].

We denote by N(i) the neighborhood of i , that is,

N(i) = {j : {j , i} ∈ E (G)}

.

Further let G (i) be the complementary graph of the restriction
GN(i) of G to N(i).

Theorem. (Altmann, Bigdeli, Dancheng Lu, H) The following
conditions are equivalent:

(a) The graph G is inseparable;

(b) G (i) is connected for all i .
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Let G be any bi-CM graph, and let T be the relation tree attached
to a relation matrix A of I(G)∨.

The generic relation matrix AT specializes to A. From this fact
one can deduce that I(GT ) specializes to I(G).

Therefore, for any relation tree T of I(G)∨, one obtains the
inseparable model GT of G .

Finally one shows that any inseparable bi-CM graph is of the form
GT , and that all inseparable models of G are the graphs GT with
T a relation tree of I(G)∨.



Problem 1. Which of the ideals L(P, Q) is bi-CM?

Problem 2. Which of the polymatroidal ideals are bi-CM?

Problem 3. Which of the matroidal ideals are inseparable?


