Lecture 4: Bi-Cohen-Macaulay graphs

Jürgen Herzog
Universität Duisburg-Essen

August 17-24
Moieciu de Sus, România

Basis properties of bi-CM graphs

Let G be a finite simple graph on the vertex set [n]. We fix a field K and let $I(G) \subset K\left[x_{1}, \ldots, x_{n}\right]$ its edge ideal.

Basis properties of bi-CM graphs

Let G be a finite simple graph on the vertex set $[n]$. We fix a field K and let $I(G) \subset K\left[x_{1}, \ldots, x_{n}\right]$ its edge ideal.

According Fløystad and Vatne, a squarefree monomial ideal $I \subset S$ is called bi-Cohen-Macaulay (or simply bi-CM) if I as well as its Alexander dual I^{\vee} of I is a Cohen-Macaulay ideal. A graph G is called Cohen-Macaulay or bi-Cohen-Macaulay (over K)(CM or bi-CM for short), if $I(G)$ is CM or bi-CM.

Basis properties of bi-CM graphs

Let G be a finite simple graph on the vertex set $[n]$. We fix a field K and let $I(G) \subset K\left[x_{1}, \ldots, x_{n}\right]$ its edge ideal.

According Fløystad and Vatne, a squarefree monomial ideal $I \subset S$ is called bi-Cohen-Macaulay (or simply bi-CM) if I as well as its Alexander dual I^{\vee} of I is a Cohen-Macaulay ideal. A graph G is called Cohen-Macaulay or bi-Cohen-Macaulay (over K)(CM or bi-CM for short), if $I(G)$ is CM or bi-CM.

One important result regarding the Alexander dual that we will frequently use, is the Eagon-Reiner theorem which says that l is a Cohen-Macaulay ideal if and only if I^{\vee} has a linear resolution.

Basis properties of bi-CM graphs

Let G be a finite simple graph on the vertex set [n]. We fix a field K and let $I(G) \subset K\left[x_{1}, \ldots, x_{n}\right]$ its edge ideal.

According Fløystad and Vatne, a squarefree monomial ideal $I \subset S$ is called bi-Cohen-Macaulay (or simply bi-CM) if I as well as its Alexander dual I^{\vee} of I is a Cohen-Macaulay ideal. A graph G is called Cohen-Macaulay or bi-Cohen-Macaulay (over K)(CM or bi-CM for short), if $I(G)$ is CM or bi-CM.

One important result regarding the Alexander dual that we will frequently use, is the Eagon-Reiner theorem which says that l is a Cohen-Macaulay ideal if and only if I^{\vee} has a linear resolution.
Thus the Eagon-Reiner theorem implies that I is bi-CM if and only if I is a Cohen-Macaulay ideal with linear resolution.

From this description it follows that a bi-CM graph is connected. Indeed, if this is not the case, then there are induced subgraphs $G_{1}, G_{2} \subset G$ such that $V(G)$ is the disjoint union of $V\left(G_{1}\right)$ and $V\left(G_{2}\right)$. It follows that $I(G)=I\left(G_{1}\right)+I\left(G_{2}\right)$, and the ideals $I\left(G_{1}\right)$ and $I\left(G_{2}\right)$ are ideals in a different set of variables.

From this description it follows that a bi-CM graph is connected. Indeed, if this is not the case, then there are induced subgraphs $G_{1}, G_{2} \subset G$ such that $V(G)$ is the disjoint union of $V\left(G_{1}\right)$ and $V\left(G_{2}\right)$. It follows that $I(G)=I\left(G_{1}\right)+I\left(G_{2}\right)$, and the ideals $I\left(G_{1}\right)$ and $I\left(G_{2}\right)$ are ideals in a different set of variables. Therefore, the free resolution of $S / I(G)$ is obtained as the tensor product of the resolutions of $S / I\left(G_{1}\right)$ and $S / I\left(G_{2}\right)$. This implies that $I(G)$ has relations of degree 4 , so that $I(G)$ does not have a linear resolution.

From this description it follows that a bi-CM graph is connected. Indeed, if this is not the case, then there are induced subgraphs $G_{1}, G_{2} \subset G$ such that $V(G)$ is the disjoint union of $V\left(G_{1}\right)$ and $V\left(G_{2}\right)$. It follows that $I(G)=I\left(G_{1}\right)+I\left(G_{2}\right)$, and the ideals $I\left(G_{1}\right)$ and $I\left(G_{2}\right)$ are ideals in a different set of variables. Therefore, the free resolution of $S / I(G)$ is obtained as the tensor product of the resolutions of $S / I\left(G_{1}\right)$ and $S / I\left(G_{2}\right)$. This implies that $I(G)$ has relations of degree 4 , so that $I(G)$ does not have a linear resolution.

A subset $C \subset[n]$ is called a vertex cover of G if $C \cap\{i, j\} \neq \emptyset$ for all edges $\{i, j\}$ of G. The graph G is called unmixed if all minimal vertex covers of G have the same cardinality.

From this description it follows that a bi-CM graph is connected. Indeed, if this is not the case, then there are induced subgraphs $G_{1}, G_{2} \subset G$ such that $V(G)$ is the disjoint union of $V\left(G_{1}\right)$ and $V\left(G_{2}\right)$. It follows that $I(G)=I\left(G_{1}\right)+I\left(G_{2}\right)$, and the ideals $I\left(G_{1}\right)$ and $I\left(G_{2}\right)$ are ideals in a different set of variables. Therefore, the free resolution of $S / I(G)$ is obtained as the tensor product of the resolutions of $S / I\left(G_{1}\right)$ and $S / I\left(G_{2}\right)$. This implies that $I(G)$ has relations of degree 4 , so that $I(G)$ does not have a linear resolution.
A subset $C \subset[n]$ is called a vertex cover of G if $C \cap\{i, j\} \neq \emptyset$ for all edges $\{i, j\}$ of G. The graph G is called unmixed if all minimal vertex covers of G have the same cardinality.

Let $C \subset[n]$. Then the monomial prime ideal $P_{C}=\left(\left\{x_{i}: i \in C\right\}\right)$ is a minimal prime ideal of $I(G)$ if and only if C is a minimal vertex cover of G. Thus G is unmixed if and only if $I(G)$ is unmixed in the algebraic sense.

A subset $D \subset[n]$ is called an independent set of G if D contains no set $\{i, j\}$ which is an edge of G. Note that D is an independent set of G if and only if $[n] \backslash D$ is a vertex cover. Thus the minimal vertex covers of G correspond to the maximal independent sets of G .

A subset $D \subset[n]$ is called an independent set of G if D contains no set $\{i, j\}$ which is an edge of G. Note that D is an independent set of G if and only if $[n] \backslash D$ is a vertex cover. Thus the minimal vertex covers of G correspond to the maximal independent sets of G.

The cardinality of a maximal independent is called the independence number of G. It follows that the Krull dimension of $S / I(G)$ is equal to c, where c is the independence number of G.

A subset $D \subset[n]$ is called an independent set of G if D contains no set $\{i, j\}$ which is an edge of G. Note that D is an independent set of G if and only if $[n] \backslash D$ is a vertex cover. Thus the minimal vertex covers of G correspond to the maximal independent sets of G.

The cardinality of a maximal independent is called the independence number of G. It follows that the Krull dimension of $S / I(G)$ is equal to c, where c is the independence number of G.

Proposition. Let G be a graph on the vertex set [n] with independence number c. The following conditions are equivalent:

A subset $D \subset[n]$ is called an independent set of G if D contains no set $\{i, j\}$ which is an edge of G. Note that D is an independent set of G if and only if $[n] \backslash D$ is a vertex cover. Thus the minimal vertex covers of G correspond to the maximal independent sets of G.

The cardinality of a maximal independent is called the independence number of G. It follows that the Krull dimension of $S / I(G)$ is equal to c, where c is the independence number of G.

Proposition. Let G be a graph on the vertex set [n] with independence number c. The following conditions are equivalent:
(a) G is a bi-CM graph over K;

A subset $D \subset[n]$ is called an independent set of G if D contains no set $\{i, j\}$ which is an edge of G. Note that D is an independent set of G if and only if $[n] \backslash D$ is a vertex cover. Thus the minimal vertex covers of G correspond to the maximal independent sets of G.

The cardinality of a maximal independent is called the independence number of G. It follows that the Krull dimension of $S / I(G)$ is equal to c, where c is the independence number of G.

Proposition. Let G be a graph on the vertex set [n] with independence number c. The following conditions are equivalent:
(a) G is a bi-CM graph over K;
(b) G is a $C M$ graph over K and $|E(G)|=\binom{n-c+1}{2}$;

A subset $D \subset[n]$ is called an independent set of G if D contains no set $\{i, j\}$ which is an edge of G. Note that D is an independent set of G if and only if $[n] \backslash D$ is a vertex cover. Thus the minimal vertex covers of G correspond to the maximal independent sets of G.

The cardinality of a maximal independent is called the independence number of G. It follows that the Krull dimension of $S / I(G)$ is equal to c, where c is the independence number of G.

Proposition. Let G be a graph on the vertex set [n] with independence number c. The following conditions are equivalent:
(a) G is a bi-CM graph over K;
(b) G is a $C M$ graph over K and $|E(G)|=\binom{n-c+1}{2}$;
(c) G is a CM graph over K and the number of minimal vertex covers of G is equal to $n-c+1$;

A subset $D \subset[n]$ is called an independent set of G if D contains no set $\{i, j\}$ which is an edge of G. Note that D is an independent set of G if and only if $[n] \backslash D$ is a vertex cover. Thus the minimal vertex covers of G correspond to the maximal independent sets of G.

The cardinality of a maximal independent is called the independence number of G. It follows that the Krull dimension of $S / I(G)$ is equal to c, where c is the independence number of G.

Proposition. Let G be a graph on the vertex set [n] with independence number c. The following conditions are equivalent:
(a) G is a bi-CM graph over K;
(b) G is a $C M$ graph over K and $|E(G)|=\binom{n-c+1}{2}$;
(c) G is a CM graph over K and the number of minimal vertex covers of G is equal to $n-c+1$;
(d) $\beta_{i}\left(I_{G}\right)=(i+1)\binom{n-c+1}{i+2}$ for $i=0, \ldots, n-c-1$.

For the proof of the equivalent conditions we may assume that K is infinite.

For the proof of the equivalent conditions we may assume that K is infinite.
(a) $\Leftrightarrow(b)$: We divide $S / I(G)$ by a maximal regular sequence of linear forms to obtain T / J, where J is generated in degree 2 and $\operatorname{dim} T / J=0$. Now $I(G)$ has a linear resolution if and only if J has a linear resolution, and this is the case if and only if $J=\mathfrak{m}_{T}^{2}$. Thus G is bi-CM if and only if the number of generators of J is equal to $\binom{n-c+1}{2}$. Since I_{G} and J have the same number of generators and since the number of generators of I_{G} is equal to $|E(G)|$, the assertion follows.

For the proof of the equivalent conditions we may assume that K is infinite.
(a) $\Leftrightarrow(\mathrm{b})$: We divide $S / I(G)$ by a maximal regular sequence of linear forms to obtain T / J, where J is generated in degree 2 and $\operatorname{dim} T / J=0$. Now $I(G)$ has a linear resolution if and only if J has a linear resolution, and this is the case if and only if $J=\mathfrak{m}_{T}^{2}$. Thus G is bi-CM if and only if the number of generators of J is equal to $\binom{n-c+1}{2}$. Since I_{G} and J have the same number of generators and since the number of generators of I_{G} is equal to $|E(G)|$, the assertion follows.
(b) \Leftrightarrow (c): Since S / I_{G} is Cohen-Macaulay, the multiplicity of S / I_{G} is equal to the length $\ell(T / J)$ of T / J. On the other hand, the multiplicity is also the number of minimal prime ideals of I_{G} which coincides with the number of minimal vertex covers of G. Thus the length of T / J is equal to the number of minimal vertex covers of G. Since $J=\mathfrak{m}_{T}^{2}$ if and only if $\ell(T / J)=n-c+1$, the assertion follows.
$(\mathrm{a}) \Rightarrow(\mathrm{d})$: Note that $\beta_{i}\left(I_{G}\right)=\beta_{i}(J)$ for all i. Since J is isomorphic to the ideal of 2-minors of the matrix

$$
\left(\begin{array}{ccccc}
y_{1} & y_{2} & \cdots & y_{n-c} & 0 \\
0 & y_{1} & \cdots & y_{n-c-1} & y_{n-c}
\end{array}\right)
$$

in the variables y_{1}, \ldots, y_{n-c}, the Eagon-Northcott complex provides a free resolution of J, and the desired result follows.
$(\mathrm{a}) \Rightarrow(\mathrm{d})$: Note that $\beta_{i}\left(I_{G}\right)=\beta_{i}(J)$ for all i. Since J is isomorphic to the ideal of 2-minors of the matrix

$$
\left(\begin{array}{ccccc}
y_{1} & y_{2} & \cdots & y_{n-c} & 0 \\
0 & y_{1} & \cdots & y_{n-c-1} & y_{n-c}
\end{array}\right)
$$

in the variables y_{1}, \ldots, y_{n-c}, the Eagon-Northcott complex provides a free resolution of J, and the desired result follows.
$(\mathrm{d}) \Rightarrow(\mathrm{a})$: It follows from the description of the Betti numbers of I_{G} that proj $\operatorname{dim} S / I_{G}=n-c$. Thus, depth $S / I_{G}=c$. Since $\operatorname{dim} S / I_{G}=c$, it follows that I_{G} is a Cohen-Macaulay ideal. Since $|E(G)|=\beta_{0}\left(I_{G}\right)=\binom{n-c+1}{2}$, condition (b) is satisfied, and hence G is $\mathrm{bi}-\mathrm{CM}$, as desired. \square

The classification of bipartite and chordal bi-CM graphs

Theorem. Let G be a bipartite graph on the vertex set V with bipartition $V=V_{1} \cup V_{2}$ where $V_{1}=\left\{v_{1}, \ldots, v_{n}\right\}$ and $V_{2}=\left\{w_{1}, \ldots, w_{m}\right\}$. Then the following conditions are equivalent:
(a) G is a bi-CM graph;
(b) $n=m$ and $E(G)=\left\{\left\{v_{i}, w_{j}\right\} 1 \leq i \leq j \leq n\right\}$.

The classification of bipartite and chordal bi-CM graphs

Theorem. Let G be a bipartite graph on the vertex set V with bipartition $V=V_{1} \cup V_{2}$ where $V_{1}=\left\{v_{1}, \ldots, v_{n}\right\}$ and $V_{2}=\left\{w_{1}, \ldots, w_{m}\right\}$. Then the following conditions are equivalent:
(a) G is a bi-CM graph;
(b) $n=m$ and $E(G)=\left\{\left\{v_{i}, w_{j}\right\} 1 \leq i \leq j \leq n\right\}$.

The following picture shows a bi-CM bipartite graph for $n=4$.

Figure: A bi-CM bipartite graph.

A subset $F \subset[n]$ is called a clique of G, if $\{i, j\} \in E(G)$ for all $i, j \in F$ with $i \neq j$. The set of all cliques of G is a simplicial complex, denoted $\Delta(G)$.

A subset $F \subset[n]$ is called a clique of G, if $\{i, j\} \in E(G)$ for all $i, j \in F$ with $i \neq j$. The set of all cliques of G is a simplicial complex, denoted $\Delta(G)$.

Theorem.Let G be a chordal graph on the vertex set $[n]$. The following conditions are equivalent:
(a) G is a bi-CM graph;

A subset $F \subset[n]$ is called a clique of G, if $\{i, j\} \in E(G)$ for all $i, j \in F$ with $i \neq j$. The set of all cliques of G is a simplicial complex, denoted $\Delta(G)$.

Theorem.Let G be a chordal graph on the vertex set [n]. The following conditions are equivalent:
(a) G is a bi-CM graph;
(b) Let F_{1}, \ldots, F_{m} be the facets of the clique complex of G with a free vertex. Then $m=1$, or $m>1$ and
(i) $V(G)=V\left(F_{1}\right) \cup V\left(F_{2}\right) \cup \ldots \cup V\left(F_{m}\right)$, and this union is disjoint;

A subset $F \subset[n]$ is called a clique of G, if $\{i, j\} \in E(G)$ for all $i, j \in F$ with $i \neq j$. The set of all cliques of G is a simplicial complex, denoted $\Delta(G)$.

Theorem.Let G be a chordal graph on the vertex set [n]. The following conditions are equivalent:
(a) G is a bi-CM graph;
(b) Let F_{1}, \ldots, F_{m} be the facets of the clique complex of G with a free vertex. Then $m=1$, or $m>1$ and
(i) $V(G)=V\left(F_{1}\right) \cup V\left(F_{2}\right) \cup \ldots \cup V\left(F_{m}\right)$, and this union is disjoint;
(ii) each F_{i} has exactly one free vertex j_{i};

A subset $F \subset[n]$ is called a clique of G, if $\{i, j\} \in E(G)$ for all $i, j \in F$ with $i \neq j$. The set of all cliques of G is a simplicial complex, denoted $\Delta(G)$.
Theorem.Let G be a chordal graph on the vertex set [n]. The following conditions are equivalent:
(a) G is a bi-CM graph;
(b) Let F_{1}, \ldots, F_{m} be the facets of the clique complex of G with a free vertex. Then $m=1$, or $m>1$ and
(i) $V(G)=V\left(F_{1}\right) \cup V\left(F_{2}\right) \cup \ldots \cup V\left(F_{m}\right)$, and this union is disjoint;
(ii) each F_{i} has exactly one free vertex j_{i};
(iii) the restriction of G to $[n] \backslash\left\{j_{1}, \ldots, j_{m}\right\}$ is a clique.

The following picture shows, up to isomorphism, all bi-CM chordal graphs whose center is the complete graph K_{4} on 4 vertices:

Inseparable graphs

We say that G is inseparable, if $I(G)$ is inseparable.

Inseparable graphs

We say that G is inseparable, if $I(G)$ is inseparable.
When is a graph inseparable and what are the separable models of a graph?

Figure: A triangle and one of its inseparable models

Generic Bi-CM graphs

Let T be a tree on the vertex set [n], and let i and j be any two vertices of the tree T.

Generic Bi-CM graphs

Let T be a tree on the vertex set $[n]$, and let i and j be any two vertices of the tree T.

There exists a unique path $P: i=i_{0}, i_{1}, \ldots, i_{r}=j$ from i to j.

Generic Bi-CM graphs

Let T be a tree on the vertex set [n], and let i and j be any two vertices of the tree T.

There exists a unique path $P: i=i_{0}, i_{1}, \ldots, i_{r}=j$ from i to j.
We set $b(i, j)=i_{1}$ and call $b(i, j)$ the begin of P, and set $e(i, j)=i_{r-1}$ and call $e(i, j)$ the end of P.

Generic Bi-CM graphs

Let T be a tree on the vertex set [n], and let i and j be any two vertices of the tree T.

There exists a unique path $P: i=i_{0}, i_{1}, \ldots, i_{r}=j$ from i to j.
We set $b(i, j)=i_{1}$ and call $b(i, j)$ the begin of P, and set $e(i, j)=i_{r-1}$ and call $e(i, j)$ the end of P.

We now define the generic graph G_{T} associated with T whose vertex set is

$$
V\left(G_{T}\right)=\{(i, j),(j, i):\{i, j\} \text { is an edge of } T\}
$$

and with $\{(i, k),(j, I)\} \in E\left(G_{T}\right)$ if and only if there exists a path P from i to j such that $k=b(i, j)$ and $I=e(i, j)$.

The generic graph of T.

G_{T}

The following theorem gives a classification of $\mathrm{Bi}-\mathrm{CM}$ - up to separation.

The following theorem gives a classification of $\mathrm{Bi}-\mathrm{CM}$ - up to separation.

Theorem. (H-Rahimi) (a) Let T be a tree. Then G_{T} is an inseparable Bi-CM graph.

The following theorem gives a classification of $\mathrm{Bi}-\mathrm{CM}$ - up to separation.

Theorem. (H-Rahimi) (a) Let T be a tree. Then G_{T} is an inseparable $\mathrm{Bi}-\mathrm{CM}$ graph.
(b) For any inseparable $\mathrm{Bi}-\mathrm{CM}$ graph G, there exists a unique tree T such that $G \simeq G_{T}$.

The following theorem gives a classification of $\mathrm{Bi}-\mathrm{CM}$ - up to separation.

Theorem. (H-Rahimi) (a) Let T be a tree. Then G_{T} is an inseparable $\mathrm{Bi}-\mathrm{CM}$ graph.
(b) For any inseparable $\mathrm{Bi}-\mathrm{CM}$ graph G, there exists a unique tree T such that $G \simeq G_{T}$.
(c) Let G be any $\mathrm{Bi}-\mathrm{CM}$ graph. Then there exists a tree T such that G_{T} is an inseparable model of G.

The following theorem gives a classification of $\mathrm{Bi}-\mathrm{CM}$ - up to separation.

Theorem. (H-Rahimi) (a) Let T be a tree. Then G_{T} is an inseparable $\mathrm{Bi}-\mathrm{CM}$ graph.
(b) For any inseparable $\mathrm{Bi}-\mathrm{CM}$ graph G, there exists a unique tree T such that $G \simeq G_{T}$.
(c) Let G be any $\mathrm{Bi}-\mathrm{CM}$ graph. Then there exists a tree T such that G_{T} is an inseparable model of G.
(d) The finitely many trees T for which G_{T} is an inseparable model of G can all be determined by considering the Alexander dual $I(G)^{\vee}$ of $I(G)$, and the relation trees of $I(G)^{\vee}$.

The proof of the theorem needs several steps.

The proof of the theorem needs several steps.
As we noticed before, the Alexander dual $J=I(G)^{\vee}$ of the edge ideal of a bi-CM graph G is a Cohen-Macaulay ideal of codimension 2 with linear resolution. The ideal J may have several distinct relation matrices with respect to the unique minimal set of monomial generators of J.

The proof of the theorem needs several steps.
As we noticed before, the Alexander dual $J=I(G)^{\vee}$ of the edge ideal of a bi-CM graph G is a Cohen-Macaulay ideal of codimension 2 with linear resolution. The ideal J may have several distinct relation matrices with respect to the unique minimal set of monomial generators of J.

As shown in the paper "On multigraded resolutions" (Bruns-Herzog), one may attach to each of the relation matrices A of J a tree Γ, the so-called relation tree of A, as follows:

The proof of the theorem needs several steps.
As we noticed before, the Alexander dual $J=I(G)^{\vee}$ of the edge ideal of a bi-CM graph G is a Cohen-Macaulay ideal of codimension 2 with linear resolution. The ideal J may have several distinct relation matrices with respect to the unique minimal set of monomial generators of J.

As shown in the paper "On multigraded resolutions" (Bruns-Herzog), one may attach to each of the relation matrices A of J a tree Γ, the so-called relation tree of A, as follows:

Let u_{1}, \ldots, u_{m+1} be the unique minimal set of monomial generators of J. Because J has a linear resolution, the generating relations of J may be chosen all of the form $x_{k} u_{i}-x_{l} u_{j}=0$. This implies that in each row of the $m \times(m+1)$-relation matrix A there are exactly two non-zero entries (which are variables with different signs). We call such relations, relations of binomial type.

Consider the bi-CM graph G on the vertex set [5] and edges $\{1,2\}$ $\{2,3\},\{3,1\},\{2,4\},\{3,4\},\{4,5\}$.

The ideal $J=I_{G}^{V}$ is generated by $u_{1}=x_{2} x_{3} x_{4}, u_{2}=x_{1} x_{3} x_{4}$, $u_{3}=x_{2} x_{3} x_{5}$ and $u_{4}=x_{1} x_{2} x_{4}$. The relation matrices with respect to u_{1}, u_{2}, u_{3} and u_{4} are the matrices

$$
A_{1}=\left(\begin{array}{cccc}
x_{1} & -x_{2} & 0 & 0 \\
x_{5} & 0 & -x_{4} & 0 \\
x_{1} & 0 & 0 & -x_{3}
\end{array}\right)
$$

and

$$
A_{2}=\left(\begin{array}{cccc}
x_{1} & -x_{2} & 0 & 0 \\
x_{5} & 0 & -x_{4} & 0 \\
0 & x_{2} & 0 & -x_{3}
\end{array}\right)
$$

In the above example the relation tree of A_{1} is

while the relation tree of A_{2} is

Conversely, we now define for any given tree T on the vertex set [$m+1$] with edges e_{1}, \ldots, e_{m} the $m \times(m+1)$-matrix A_{T} whose entries $a_{k l}$ are defined as follows:

Conversely, we now define for any given tree T on the vertex set $[m+1]$ with edges e_{1}, \ldots, e_{m} the $m \times(m+1)$-matrix A_{T} whose entries $a_{k l}$ are defined as follows: we assign to the k th edge $e_{k}=\{i, j\}$ of T with $i<j$ the k th row of A_{T} by setting

$$
a_{k l}= \begin{cases}x_{i j}, & \text { if } I=i \\ -x_{j i}, & \text { if } I=j \\ 0, & \text { otherwise }\end{cases}
$$

The matrix A_{T} is called the generic matrix attached to the tree T.

Conversely, we now define for any given tree T on the vertex set $[m+1]$ with edges e_{1}, \ldots, e_{m} the $m \times(m+1)$-matrix A_{T} whose entries $a_{k l}$ are defined as follows: we assign to the k th edge $e_{k}=\{i, j\}$ of T with $i<j$ the k th row of A_{T} by setting

$$
a_{k l}= \begin{cases}x_{i j}, & \text { if } I=i \\ -x_{j i}, & \text { if } I=j \\ 0, & \text { otherwise }\end{cases}
$$

The matrix A_{T} is called the generic matrix attached to the tree T.
By the Hilbert-Burch theorem, the matrix A_{T} is the relation matrix of the ideal J_{T} of maximal minors of A_{T}, and J_{T} is a Cohen-Macaulay ideal of codimension 2 with linear resolution.

Naeem showed: the minors of A_{T} (which are the generators of J_{T}) are the monomials

$$
\prod_{\substack{i=1 \\ i \neq j}}^{m+1} x_{i b(i, j)} \quad(j=1, \ldots, m+1)
$$

Naeem showed: the minors of A_{T} (which are the generators of J_{T}) are the monomials

$$
\prod_{\substack{i=1 \\ i \neq j}}^{m+1} x_{i b(i, j)} \quad(j=1, \ldots, m+1)
$$

and

$$
J_{T}^{\vee}=\left(x_{i b(i, j)} x_{j e(i, j)}: 1 \leq i<j \leq m+1\right) .
$$

Naeem showed: the minors of A_{T} (which are the generators of J_{T}) are the monomials

$$
\prod_{\substack{i=1 \\ i \neq j}}^{m+1} x_{i b(i, j)} \quad(j=1, \ldots, m+1)
$$

and

$$
J_{T}^{\vee}=\left(x_{i b(i, j)} x_{j e(i, j)}: 1 \leq i<j \leq m+1\right) .
$$

Hence $J_{T}^{\vee}=I\left(G_{T}\right)$ where G_{T} is the generic graph defined before.
This shows that G_{T} is a bi-CM graph.

In order to see that G_{T} is inseparable, we apply the following criterion: let G be a graph on the vertex set $[n]$.

In order to see that G_{T} is inseparable, we apply the following criterion: let G be a graph on the vertex set [n].

We denote by $N(i)$ the neighborhood of i, that is,

$$
N(i)=\{j:\{j, i\} \in E(G)\}
$$

In order to see that G_{T} is inseparable, we apply the following criterion: let G be a graph on the vertex set [n].

We denote by $N(i)$ the neighborhood of i, that is,

$$
N(i)=\{j:\{j, i\} \in E(G)\}
$$

Further let $G^{(i)}$ be the complementary graph of the restriction $G_{N(i)}$ of G to $N(i)$.

In order to see that G_{T} is inseparable, we apply the following criterion: let G be a graph on the vertex set [n].

We denote by $N(i)$ the neighborhood of i, that is,

$$
N(i)=\{j:\{j, i\} \in E(G)\}
$$

Further let $G^{(i)}$ be the complementary graph of the restriction $G_{N(i)}$ of G to $N(i)$.

Theorem. (Altmann, Bigdeli, Dancheng Lu, H) The following conditions are equivalent:
(a) The graph G is inseparable;
(b) $G^{(i)}$ is connected for all i.

Now we know that G_{T} is an inseparable bi-CM graph.

Now we know that G_{T} is an inseparable bi-CM graph.
Let G be any bi-CM graph, and let T be the relation tree attached to a relation matrix A of $I(G)^{\vee}$.

Now we know that G_{T} is an inseparable bi-CM graph.
Let G be any bi-CM graph, and let T be the relation tree attached to a relation matrix A of $I(G)^{\vee}$.

The generic relation matrix A_{T} specializes to A. From this fact one can deduce that $I\left(G_{T}\right)$ specializes to $I(G)$.

Now we know that G_{T} is an inseparable bi-CM graph.
Let G be any bi-CM graph, and let T be the relation tree attached to a relation matrix A of $I(G)^{\vee}$.

The generic relation matrix A_{T} specializes to A. From this fact one can deduce that $I\left(G_{T}\right)$ specializes to $I(G)$.

Therefore, for any relation tree T of $I(G)^{\vee}$, one obtains the inseparable model G_{T} of G.

Now we know that G_{T} is an inseparable bi-CM graph.
Let G be any bi-CM graph, and let T be the relation tree attached to a relation matrix A of $I(G)^{\vee}$.

The generic relation matrix A_{T} specializes to A. From this fact one can deduce that $I\left(G_{T}\right)$ specializes to $I(G)$.

Therefore, for any relation tree T of $I(G)^{\vee}$, one obtains the inseparable model G_{T} of G.

Finally one shows that any inseparable bi-CM graph is of the form G_{T}, and that all inseparable models of G are the graphs G_{T} with T a relation tree of $I(G)^{\vee}$.

Problem 1. Which of the ideals $L(P, Q)$ is bi-CM?
Problem 2. Which of the polymatroidal ideals are bi-CM?
Problem 3. Which of the matroidal ideals are inseparable?

