Lecture 5: Rigidity and separability of simplicial complexes and toric rings

Jürgen Herzog
Universität Duisburg-Essen

August 17-24
Moieciu de Sus, România

Rigid simplicial complexes

Let K be a field, and Δ be a simplicial complex on the vertex set [n].

Rigid simplicial complexes

Let K be a field, and Δ be a simplicial complex on the vertex set [n].

It is an open problem to classify the rigid simplicial complexes, that is, simplicial complexes Δ with the property that the Stanley-Reisner ring $K[\Delta]$ is rigid.

Rigid simplicial complexes

Let K be a field, and Δ be a simplicial complex on the vertex set [n].

It is an open problem to classify the rigid simplicial complexes, that is, simplicial complexes Δ with the property that the Stanley-Reisner ring $K[\Delta]$ is rigid.

From Lecture 3 we know that $K[\Delta]$ is rigid if and only if $T^{1}(K[\Delta])=0$.

Rigid simplicial complexes

Let K be a field, and Δ be a simplicial complex on the vertex set [n].

It is an open problem to classify the rigid simplicial complexes, that is, simplicial complexes Δ with the property that the Stanley-Reisner ring $K[\Delta]$ is rigid.

From Lecture 3 we know that $K[\Delta]$ is rigid if and only if $T^{1}(K[\Delta])=0$.
Since $T^{1}(K[\Delta])$ is \mathbb{Z}^{n}-graded, it follows that $T^{1}(K[\Delta])=0$ if and only if $T^{1}(K[\Delta])_{\mathbf{c}}=0$ for all $\mathbf{c} \in \mathbb{Z}^{n}$.

The field K will be fixed, and we write $T^{1}(\Delta)$ for $T^{1}(K[\Delta])$, in order to simplify notation.

The field K will be fixed, and we write $T^{1}(\Delta)$ for $T^{1}(K[\Delta])$, in order to simplify notation.

We write $\mathbf{c} \in \mathbb{Z}^{n}$ as $\mathbf{a}-\mathbf{b}$ with $\mathbf{a}, \mathbf{b} \in \mathbb{N}^{n}$ and $\operatorname{supp} \mathbf{a} \cap \operatorname{supp} \mathbf{b}=\emptyset$, and set $A=\operatorname{supp}$ a and $B=\operatorname{supp} \mathbf{b}$. Here \mathbb{N} denotes the set of non-negative integers, and the support of a vector $\mathbf{a} \in \mathbb{N}^{n}$ is defined to be the set supp $\mathbf{a}=\left\{i \in[n]: a_{i} \neq 0\right\}$.

The field K will be fixed, and we write $T^{1}(\Delta)$ for $T^{1}(K[\Delta])$, in order to simplify notation.

We write $\mathbf{c} \in \mathbb{Z}^{n}$ as $\mathbf{a}-\mathbf{b}$ with $\mathbf{a}, \mathbf{b} \in \mathbb{N}^{n}$ and $\operatorname{supp} \mathbf{a} \cap \operatorname{supp} \mathbf{b}=\emptyset$, and set $A=\operatorname{supp}$ a and $B=\operatorname{supp} \mathbf{b}$. Here \mathbb{N} denotes the set of non-negative integers, and the support of a vector $\mathbf{a} \in \mathbb{N}^{n}$ is defined to be the set supp $\mathbf{a}=\left\{i \in[n]: a_{i} \neq 0\right\}$.

Theorem. (Altmann, Christophersen) (a) $T^{1}(\Delta)_{\mathbf{a}-\mathbf{b}}=0$ if $\mathbf{b} \notin\{0,1\}^{n}$.

The field K will be fixed, and we write $T^{1}(\Delta)$ for $T^{1}(K[\Delta])$, in order to simplify notation.

We write $\mathbf{c} \in \mathbb{Z}^{n}$ as $\mathbf{a}-\mathbf{b}$ with $\mathbf{a}, \mathbf{b} \in \mathbb{N}^{n}$ and supp $\mathbf{a} \cap \operatorname{supp} \mathbf{b}=\emptyset$, and set $A=\operatorname{supp}$ a and $B=\operatorname{supp} \mathbf{b}$. Here \mathbb{N} denotes the set of non-negative integers, and the support of a vector $\mathbf{a} \in \mathbb{N}^{n}$ is defined to be the set supp $\mathbf{a}=\left\{i \in[n]: a_{i} \neq 0\right\}$.

Theorem. (Altmann, Christophersen) (a) $T^{1}(\Delta)_{\mathbf{a}-\mathbf{b}}=0$ if $\mathbf{b} \notin\{0,1\}^{n}$.
(b) Assuming $\mathbf{b} \in\{0,1\}^{n}$, then $T^{1}(\Delta)_{\mathbf{a}-\mathbf{b}}$ depends only on A and B.

Recall that for a subset A of $[n]$, the link of A is defined to be

$$
\operatorname{link}_{\Delta} A=\{F \in \Delta F \cap A=\emptyset, F \cup A \in \Delta\}
$$

with vertex set $V\left(\operatorname{link}_{\Delta} A\right)=[n] \backslash A$.

Recall that for a subset A of $[n]$, the link of A is defined to be

$$
\operatorname{link}_{\Delta} A=\{F \in \Delta F \cap A=\emptyset, F \cup A \in \Delta\}
$$

with vertex set $V\left(\right.$ link $\left._{\Delta} A\right)=[n] \backslash A$.
Theorem. (Altmann, Christophersen)

$$
T^{1}(\Delta)_{\mathbf{a}-\mathbf{b}}=T^{1}\left(\text { link }_{\Delta} A\right)_{-\mathbf{b}}
$$

Recall that for a subset A of $[n]$, the link of A is defined to be

$$
\text { link }_{\Delta} A=\{F \in \Delta F \cap A=\emptyset, F \cup A \in \Delta\}
$$

with vertex set $V\left(\right.$ link $\left._{\Delta} A\right)=[n] \backslash A$.
Theorem. (Altmann, Christophersen)

$$
T^{1}(\Delta)_{\mathbf{a}-\mathbf{b}}=T^{1}\left(\text { link }_{\Delta} A\right)_{-\mathbf{b}}
$$

We say that Δ is \emptyset-rigid, if $T^{1}(\Delta)_{-\mathbf{b}}=0$ for all $\mathbf{b} \in\{0,1\}^{n}$. Thus, Δ is rigid, if and only if all its links are \emptyset-rigid.

Let Δ_{1} and Δ_{2} be simplicial complexes on disjoint vertex sets, then the join $\Delta_{1} * \Delta_{2}$ is a simplicial complex on the vertex set $V\left(\Delta_{1}\right) \cup V\left(\Delta_{2}\right)$ with faces $\left\{F \cup G: F \in \Delta_{1}, G \in \Delta_{2}\right\}$.

Let Δ_{1} and Δ_{2} be simplicial complexes on disjoint vertex sets, then the join $\Delta_{1} * \Delta_{2}$ is a simplicial complex on the vertex set $V\left(\Delta_{1}\right) \cup V\left(\Delta_{2}\right)$ with faces $\left\{F \cup G: F \in \Delta_{1}, G \in \Delta_{2}\right\}$.

Theorem. (Altmann, Bigdeli, H, Danchen Lu) (a) Let $I_{\Delta_{1}} \subseteq K\left[x_{1}, \ldots, x_{n}\right]$ and $I_{\Delta_{2}} \subseteq K\left[y_{1}, \ldots, y_{m}\right]$. Then

$$
T^{1}\left(\Delta_{1} * \Delta_{2}\right)=T^{1}\left(\Delta_{1}\right)\left[y_{1}, \ldots, y_{m}\right] \oplus T^{1}\left(\Delta_{2}\right)\left[x_{1}, \ldots, x_{n}\right] .
$$

In particular $\Delta_{1} * \Delta_{2}$ is rigid if and only if Δ_{1} and Δ_{2} are rigid.

Let Δ_{1} and Δ_{2} be simplicial complexes on disjoint vertex sets, then the join $\Delta_{1} * \Delta_{2}$ is a simplicial complex on the vertex set $V\left(\Delta_{1}\right) \cup V\left(\Delta_{2}\right)$ with faces $\left\{F \cup G: F \in \Delta_{1}, G \in \Delta_{2}\right\}$.

Theorem. (Altmann, Bigdeli, H, Danchen Lu) (a) Let $I_{\Delta_{1}} \subseteq K\left[x_{1}, \ldots, x_{n}\right]$ and $I_{\Delta_{2}} \subseteq K\left[y_{1}, \ldots, y_{m}\right]$. Then

$$
T^{1}\left(\Delta_{1} * \Delta_{2}\right)=T^{1}\left(\Delta_{1}\right)\left[y_{1}, \ldots, y_{m}\right] \oplus T^{1}\left(\Delta_{2}\right)\left[x_{1}, \ldots, x_{n}\right] .
$$

In particular $\Delta_{1} * \Delta_{2}$ is rigid if and only if Δ_{1} and Δ_{2} are rigid.
(b) Let $\Delta_{1} \neq\{\emptyset\}$ and $\Delta_{2} \neq\{\emptyset\}$ be simplicial complexes with disjoint vertex sets, and asssume that for $i=1,2,\{j\} \in \Delta_{i}$ for all $j \in V\left(\Delta_{i}\right)$. Then the following conditions are equivalent:

Let Δ_{1} and Δ_{2} be simplicial complexes on disjoint vertex sets, then the join $\Delta_{1} * \Delta_{2}$ is a simplicial complex on the vertex set $V\left(\Delta_{1}\right) \cup V\left(\Delta_{2}\right)$ with faces $\left\{F \cup G: F \in \Delta_{1}, G \in \Delta_{2}\right\}$.

Theorem. (Altmann, Bigdeli, H, Danchen Lu) (a) Let $I_{\Delta_{1}} \subseteq K\left[x_{1}, \ldots, x_{n}\right]$ and $I_{\Delta_{2}} \subseteq K\left[y_{1}, \ldots, y_{m}\right]$. Then

$$
T^{1}\left(\Delta_{1} * \Delta_{2}\right)=T^{1}\left(\Delta_{1}\right)\left[y_{1}, \ldots, y_{m}\right] \oplus T^{1}\left(\Delta_{2}\right)\left[x_{1}, \ldots, x_{n}\right] .
$$

In particular $\Delta_{1} * \Delta_{2}$ is rigid if and only if Δ_{1} and Δ_{2} are rigid.
(b) Let $\Delta_{1} \neq\{\emptyset\}$ and $\Delta_{2} \neq\{\emptyset\}$ be simplicial complexes with disjoint vertex sets, and asssume that for $i=1,2,\{j\} \in \Delta_{i}$ for all $j \in V\left(\Delta_{i}\right)$. Then the following conditions are equivalent:
(1) $\Delta_{1} \cup \Delta_{2}$ is rigid;

Let Δ_{1} and Δ_{2} be simplicial complexes on disjoint vertex sets, then the join $\Delta_{1} * \Delta_{2}$ is a simplicial complex on the vertex set $V\left(\Delta_{1}\right) \cup V\left(\Delta_{2}\right)$ with faces $\left\{F \cup G: F \in \Delta_{1}, G \in \Delta_{2}\right\}$.

Theorem. (Altmann, Bigdeli, H, Danchen Lu) (a) Let $I_{\Delta_{1}} \subseteq K\left[x_{1}, \ldots, x_{n}\right]$ and $I_{\Delta_{2}} \subseteq K\left[y_{1}, \ldots, y_{m}\right]$. Then

$$
T^{1}\left(\Delta_{1} * \Delta_{2}\right)=T^{1}\left(\Delta_{1}\right)\left[y_{1}, \ldots, y_{m}\right] \oplus T^{1}\left(\Delta_{2}\right)\left[x_{1}, \ldots, x_{n}\right] .
$$

In particular $\Delta_{1} * \Delta_{2}$ is rigid if and only if Δ_{1} and Δ_{2} are rigid.
(b) Let $\Delta_{1} \neq\{\emptyset\}$ and $\Delta_{2} \neq\{\emptyset\}$ be simplicial complexes with disjoint vertex sets, and asssume that for $i=1,2,\{j\} \in \Delta_{i}$ for all $j \in V\left(\Delta_{i}\right)$. Then the following conditions are equivalent:
(1) $\Delta_{1} \cup \Delta_{2}$ is rigid;
(2) $\Delta_{1} \cup \Delta_{2}$ is \emptyset-rigid;

Let Δ_{1} and Δ_{2} be simplicial complexes on disjoint vertex sets, then the join $\Delta_{1} * \Delta_{2}$ is a simplicial complex on the vertex set $V\left(\Delta_{1}\right) \cup V\left(\Delta_{2}\right)$ with faces $\left\{F \cup G: F \in \Delta_{1}, G \in \Delta_{2}\right\}$.

Theorem. (Altmann, Bigdeli, H, Danchen Lu) (a) Let $I_{\Delta_{1}} \subseteq K\left[x_{1}, \ldots, x_{n}\right]$ and $I_{\Delta_{2}} \subseteq K\left[y_{1}, \ldots, y_{m}\right]$. Then

$$
T^{1}\left(\Delta_{1} * \Delta_{2}\right)=T^{1}\left(\Delta_{1}\right)\left[y_{1}, \ldots, y_{m}\right] \oplus T^{1}\left(\Delta_{2}\right)\left[x_{1}, \ldots, x_{n}\right] .
$$

In particular $\Delta_{1} * \Delta_{2}$ is rigid if and only if Δ_{1} and Δ_{2} are rigid.
(b) Let $\Delta_{1} \neq\{\emptyset\}$ and $\Delta_{2} \neq\{\emptyset\}$ be simplicial complexes with disjoint vertex sets, and asssume that for $i=1,2,\{j\} \in \Delta_{i}$ for all $j \in V\left(\Delta_{i}\right)$. Then the following conditions are equivalent:
(1) $\Delta_{1} \cup \Delta_{2}$ is rigid;
(2) $\Delta_{1} \cup \Delta_{2}$ is \emptyset-rigid;
(3) Δ_{1} and Δ_{2} are simplices with $\operatorname{dim} \Delta_{1}+\operatorname{dim} \Delta_{2}>0$.

Rigid graphs

The previous theorem implies that Δ must be connected if it is rigid, unless $\operatorname{dim} \Delta=0$.

Rigid graphs

The previous theorem implies that Δ must be connected if it is rigid, unless $\operatorname{dim} \Delta=0$.

As said before, a classification of the rigid simplicial complexes is yet unknown.

Rigid graphs

The previous theorem implies that Δ must be connected if it is rigid, unless $\operatorname{dim} \Delta=0$.

As said before, a classification of the rigid simplicial complexes is yet unknown.

Here we now discuss the case that $\Delta=\Delta(G)$ where G is a graph on $[n]$ and $\Delta(G)$ is the simplicial complex of independent sets of G.

Rigid graphs

The previous theorem implies that Δ must be connected if it is rigid, unless $\operatorname{dim} \Delta=0$.

As said before, a classification of the rigid simplicial complexes is yet unknown.

Here we now discuss the case that $\Delta=\Delta(G)$ where G is a graph on $[n]$ and $\Delta(G)$ is the simplicial complex of independent sets of G.
Thus if $I(G)$ is the edge ideal of G, then $I_{\Delta(G)}=I(G)$.

Rigid graphs

The previous theorem implies that Δ must be connected if it is rigid, unless $\operatorname{dim} \Delta=0$.

As said before, a classification of the rigid simplicial complexes is yet unknown.

Here we now discuss the case that $\Delta=\Delta(G)$ where G is a graph on $[n]$ and $\Delta(G)$ is the simplicial complex of independent sets of G.
Thus if $I(G)$ is the edge ideal of G, then $I_{\Delta(G)}=I(G)$.
We call G rigid, if $K[\Delta(G)](=S / I(G))$ is rigid.

Rigid graphs

The previous theorem implies that Δ must be connected if it is rigid, unless $\operatorname{dim} \Delta=0$.

As said before, a classification of the rigid simplicial complexes is yet unknown.

Here we now discuss the case that $\Delta=\Delta(G)$ where G is a graph on $[n]$ and $\Delta(G)$ is the simplicial complex of independent sets of G.
Thus if $I(G)$ is the edge ideal of G, then $I_{\Delta(G)}=I(G)$.
We call G rigid, if $K[\Delta(G)](=S / I(G))$ is rigid.
For $i \in G$ we defined in Lecture 4, the neighborhood $N(i)=\{j:\{i, j\} \in E(G)\}$, and denoted by $G^{(i)}$ the complementary graph of the restriction $G_{N(i)}$ of G to $N(i)$.

We also define the sets

$$
N(A)=\bigcup_{i \in A} N(i)
$$

is called the neighborhood of A (in G), and the set

$$
N[A]=A \cup N(A)
$$

is called the closed neighborhood of A (in G).

We also define the sets

$$
N(A)=\bigcup_{i \in A} N(i)
$$

is called the neighborhood of A (in G), and the set

$$
N[A]=A \cup N(A)
$$

is called the closed neighborhood of A (in G).
We have the following criterion of rigidity of G.
Theorem. G is rigid if and only if for all independent sets $A \subseteq V(G)$ one has:
$(\alpha)(G \backslash N[A])^{(i)}$ is connected for all $i \in[n] \backslash N[A]$;
(β) $G \backslash N[A]$ contains no isolated edge.

By far not all bipartite graphs are rigid.

By far not all bipartite graphs are rigid.
Proposition. Let G be a Cohen-Macaulay bipartite graph. Then G is not rigid.

By far not all bipartite graphs are rigid.
Proposition. Let G be a Cohen-Macaulay bipartite graph. Then G is not rigid.
Proof. If G is not connected, then $\Delta(G)$ is a join. Thus G is rigid (resp. CM) if and only if each connected component is rigid (resp. CM). Thus we assume that G is connected.

By far not all bipartite graphs are rigid.
Proposition. Let G be a Cohen-Macaulay bipartite graph. Then G is not rigid.
Proof. If G is not connected, then $\Delta(G)$ is a join. Thus G is rigid (resp. CM) if and only if each connected component is rigid (resp. CM). Thus we assume that G is connected. Since G is

Cohen-Macaulay, after a suitable relabeling of its vertices, G arises from a finite poset $P=\left\{p_{1}, \ldots, p_{n}\right\}$ as follows:
$V(G)=\left\{p_{1}, \ldots, p_{n}, q_{1}, \ldots, q_{n}\right\}$ and $E(G)=\left\{\left\{p_{i}, q_{j}\right\} p_{i} \leq p_{j}\right\}$.
We may assume that p_{1} is a minimal element in P. Let
$A=\left\{p_{2}, \ldots, p_{n}\right\}$. Then $N[A]=\left\{p_{2}, \ldots, p_{n}, q_{2}, \ldots, q_{n}\right\}$, and
$G \backslash N[A]=\left\{p_{1}, q_{1}\right\}$. It follows from (β) that G is not rigid. \square

A vertex v of G is called a free vertex if $\operatorname{deg} v=1$, and an edge e is called a leaf if it has a free vertex. An edge e of G is called a branch, if there exists a leaf e^{\prime} with $e^{\prime} \neq e$ such that $e \cap e^{\prime} \neq \emptyset$.

A vertex v of G is called a free vertex if $\operatorname{deg} v=1$, and an edge e is called a leaf if it has a free vertex. An edge e of G is called a branch, if there exists a leaf e^{\prime} with $e^{\prime} \neq e$ such that $e \cap e^{\prime} \neq \emptyset$.
Theorem. (Altmann, Bigdeli, H, Dancheng Lu) Let G be a graph on the vertex set $[n]$ such that G does not contain any induced cycle of length 4,5 or 6 . Then G is rigid if and only if each edge of G is a branch and each vertex of a 3 -cycle of G belongs to a leaf.

A vertex v of G is called a free vertex if $\operatorname{deg} v=1$, and an edge e is called a leaf if it has a free vertex. An edge e of G is called a branch, if there exists a leaf e^{\prime} with $e^{\prime} \neq e$ such that $e \cap e^{\prime} \neq \emptyset$.
Theorem. (Altmann, Bigdeli, H, Dancheng Lu) Let G be a graph on the vertex set $[n]$ such that G does not contain any induced cycle of length 4,5 or 6 . Then G is rigid if and only if each edge of G is a branch and each vertex of a 3 -cycle of G belongs to a leaf.

Corollary. Let G be a chordal graph. Then G is rigid if and only if each edge of G is a branch and each vertex of a 3-cycle of G belongs to a leaf.

A vertex v of G is called a free vertex if $\operatorname{deg} v=1$, and an edge e is called a leaf if it has a free vertex. An edge e of G is called a branch, if there exists a leaf e^{\prime} with $e^{\prime} \neq e$ such that $e \cap e^{\prime} \neq \emptyset$.
Theorem. (Altmann, Bigdeli, H, Dancheng Lu) Let G be a graph on the vertex set $[n]$ such that G does not contain any induced cycle of length 4,5 or 6 . Then G is rigid if and only if each edge of G is a branch and each vertex of a 3 -cycle of G belongs to a leaf.

Corollary. Let G be a chordal graph. Then G is rigid if and only if each edge of G is a branch and each vertex of a 3-cycle of G belongs to a leaf.
Corollary. Suppose that all cycles of G have length ≥ 7 (which for example is the case when G is a forest). Then G is rigid if and only if each edge of G is a branch.

T^{1} for toric rings

Let H be an affine semigroup, that is, a finitely generated subsemigroup of \mathbb{Z}^{m} for some $m>0$. Let h_{1}, \ldots, h_{n} be the minimal generators of H, and fix a field K.

T^{1} for toric rings

Let H be an affine semigroup, that is, a finitely generated subsemigroup of \mathbb{Z}^{m} for some $m>0$. Let h_{1}, \ldots, h_{n} be the minimal generators of H, and fix a field K.

The toric ring $K[H]$ associated with H is the K-subalgebra of the ring $K\left[t_{1}^{ \pm 1}, \ldots, t_{m}^{ \pm 1}\right]$ of Laurent polynomials generated by the monomials $t^{h_{1}}, \ldots, t^{h_{n}}$. Here $t^{a}=t_{1}^{a(1)} \cdots t_{m}^{a(m)}$ for $a=(a(1), \ldots, a(m)) \in \mathbb{Z}^{m}$.

T^{1} for toric rings

Let H be an affine semigroup, that is, a finitely generated subsemigroup of \mathbb{Z}^{m} for some $m>0$. Let h_{1}, \ldots, h_{n} be the minimal generators of H, and fix a field K.

The toric ring $K[H]$ associated with H is the K-subalgebra of the ring $K\left[t_{1}^{ \pm 1}, \ldots, t_{m}^{ \pm 1}\right]$ of Laurent polynomials generated by the monomials $t^{h_{1}}, \ldots, t^{h_{n}}$. Here $t^{a}=t_{1}^{a(1)} \cdots t_{m}^{a(m)}$ for
$a=(a(1), \ldots, a(m)) \in \mathbb{Z}^{m}$.
Let $S=K\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring over K in the variables x_{1}, \ldots, x_{n}. The K-algebra $R=K[H]$ has a presentation $S \rightarrow R$ with $x_{i} \mapsto t^{h_{i}}$ for $i=1, \ldots, n$.

T^{1} for toric rings

Let H be an affine semigroup, that is, a finitely generated subsemigroup of \mathbb{Z}^{m} for some $m>0$. Let h_{1}, \ldots, h_{n} be the minimal generators of H, and fix a field K.

The toric ring $K[H]$ associated with H is the K-subalgebra of the ring $K\left[t_{1}^{ \pm 1}, \ldots, t_{m}^{ \pm 1}\right]$ of Laurent polynomials generated by the monomials $t^{h_{1}}, \ldots, t^{h_{n}}$. Here $t^{a}=t_{1}^{a(1)} \cdots t_{m}^{a(m)}$ for
$a=(a(1), \ldots, a(m)) \in \mathbb{Z}^{m}$.
Let $S=K\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring over K in the variables x_{1}, \ldots, x_{n}. The K-algebra $R=K[H]$ has a presentation $S \rightarrow R$ with $x_{i} \mapsto t^{h_{i}}$ for $i=1, \ldots, n$.

The kernel $I_{H} \subset S$ of this map is the toric ideal attached to H.
Corresponding to this presentation of $K[H]$ there is a presentation $\mathbb{N}^{n} \rightarrow H$ of H which can be extended to the group homomorphism $\mathbb{Z}^{n} \rightarrow \mathbb{Z}^{m}$ with $\epsilon_{i} \mapsto h_{i}$ for $i=1, \ldots, n$, where $\epsilon_{1}, \ldots, \epsilon_{n}$ denotes the canonical basis of \mathbb{Z}^{n}.

Let $L \subset \mathbb{Z}^{n}$ be the kernel of this group homomorphism. The lattice L is called the relation lattice of H. As we know, L is a free abelian group and \mathbb{Z}^{n} / L is torsion-free.

Let $L \subset \mathbb{Z}^{n}$ be the kernel of this group homomorphism. The lattice L is called the relation lattice of H. As we know, L is a free abelian group and \mathbb{Z}^{n} / L is torsion-free.

Moreover, I_{H} is generated by the binomials f_{v} with $v \in L$, where $f_{v}=x^{v_{+}}-x^{v_{-}}$.

Let $L \subset \mathbb{Z}^{n}$ be the kernel of this group homomorphism. The lattice L is called the relation lattice of H. As we know, L is a free abelian group and \mathbb{Z}^{n} / L is torsion-free.

Moreover, I_{H} is generated by the binomials f_{v} with $v \in L$, where $f_{v}=x^{v_{+}}-x^{v_{-}}$.

We define an H-grading on S by setting $\operatorname{deg} x_{i}=h_{i}$. Then I_{H} is a graded ideal with $\operatorname{deg} f_{v}=h(v)$, where

$$
h(v)=\sum_{i, v(i) \geq 0} v(i) h_{i}\left(=\sum_{i, v(i) \leq 0}-v(i) h_{i}\right) .
$$

Let v_{1}, \ldots, v_{r} be a basis of L. Since I_{H} is a prime ideal we may localize S with respect to this prime ideal and obtain

$$
I_{H} S_{I_{H}}=\left(f_{V_{1}}, \ldots, f_{V_{r}}\right) S_{I_{H}} .
$$

Let v_{1}, \ldots, v_{r} be a basis of L. Since I_{H} is a prime ideal we may localize S with respect to this prime ideal and obtain

$$
I_{H} S_{I_{H}}=\left(f_{V_{1}}, \ldots, f_{V_{r}}\right) S_{I_{H}} .
$$

In particular, we see that

$$
\text { height } I_{H}=\operatorname{rank} L \text {. }
$$

Let v_{1}, \ldots, v_{r} be a basis of L. Since I_{H} is a prime ideal we may localize S with respect to this prime ideal and obtain

$$
I_{H} S_{I_{H}}=\left(f_{V_{1}}, \ldots, f_{V_{r}}\right) S_{I_{H}} .
$$

In particular, we see that

$$
\text { height } I_{H}=\operatorname{rank} L \text {. }
$$

We let $R=K[H]$, and let $\mathbb{Z} H$ denote the associated group of H, that is, the smallest subgroup of \mathbb{Z}^{m} containing H.

Let v_{1}, \ldots, v_{r} be a basis of L. Since I_{H} is a prime ideal we may localize S with respect to this prime ideal and obtain

$$
I_{H} S_{I_{H}}=\left(f_{v_{1}}, \ldots, f_{V_{r}}\right) S_{I_{H}} .
$$

In particular, we see that

$$
\text { height } I_{H}=\operatorname{rank} L \text {. }
$$

We let $R=K[H]$, and let $\mathbb{Z} H$ denote the associated group of H, that is, the smallest subgroup of \mathbb{Z}^{m} containing H.

The cotangent module $T(K[H])$ admits a natural $\mathbb{Z} H$-grading.

The module of differentials has a presentation

$$
\Omega_{R / K}=\left(\bigoplus_{i=1}^{n} R d x_{i}\right) / U
$$

where U is the submodule of the free R-module $\bigoplus_{i=1}^{n} R d x_{i}$ generated by the elements $d f_{v}$ with $v \in L$, where

$$
d f_{v}=\sum_{i=1}^{n} \overline{\partial_{i} f_{v}} d x_{i}
$$

The module of differentials has a presentation

$$
\Omega_{R / K}=\left(\bigoplus_{i=1}^{n} R d x_{i}\right) / U
$$

where U is the submodule of the free R-module $\bigoplus_{i=1}^{n} R d x_{i}$ generated by the elements $d f_{v}$ with $v \in L$, where

$$
d f_{v}=\sum_{i=1}^{n} \overline{\partial_{i} f_{v}} d x_{i}
$$

One verifies at once that

$$
d f_{v}=\sum_{i=1}^{n} v(i) t^{h(v)-h_{i}} d x_{i}
$$

The module of differentials has a presentation

$$
\Omega_{R / K}=\left(\bigoplus_{i=1}^{n} R d x_{i}\right) / U
$$

where U is the submodule of the free R-module $\bigoplus_{i=1}^{n} R d x_{i}$ generated by the elements $d f_{v}$ with $v \in L$, where

$$
d f_{v}=\sum_{i=1}^{n} \overline{\partial_{i} f_{v}} d x_{i}
$$

One verifies at once that

$$
d f_{v}=\sum_{i=1}^{n} v(i) t^{h(v)-h_{i}} d x_{i}
$$

We consider the following example: let H be a numerical semigroup. Then $R=K[H]=K\left[t^{h_{1}}, \ldots, t^{h_{n}}\right] \subset K[t]$ with $h_{1}<h_{2}<\ldots<h_{n}$ a minimal set of generators of H.

We consider the following example: let H be a numerical semigroup. Then $R=K[H]=K\left[t^{h_{1}}, \ldots, t^{h_{n}}\right] \subset K[t]$ with $h_{1}<h_{2}<\ldots<h_{n}$ a minimal set of generators of H.

We claim that R is rigid, if and only if $n=1$, that is, if and only if R is regular.

We consider the following example: let H be a numerical semigroup. Then $R=K[H]=K\left[t^{h_{1}}, \ldots, t^{h_{n}}\right] \subset K[t]$ with $h_{1}<h_{2}<\ldots<h_{n}$ a minimal set of generators of H.

We claim that R is rigid, if and only if $n=1$, that is, if and only if R is regular.
There is an epimorphism $\chi: \Omega_{R / K} \rightarrow \mathfrak{m}$ with $\chi\left(d x_{i}\right) \mapsto h_{i} t^{h_{i}}$ where $\mathfrak{m}=\left(t^{h_{1}}, \ldots, t^{h_{n}}\right)$ is the graded maximal ideal of R.

We consider the following example: let H be a numerical semigroup. Then $R=K[H]=K\left[t^{h_{1}}, \ldots, t^{h_{n}}\right] \subset K[t]$ with $h_{1}<h_{2}<\ldots<h_{n}$ a minimal set of generators of H.

We claim that R is rigid, if and only if $n=1$, that is, if and only if R is regular.
There is an epimorphism $\chi: \Omega_{R / K} \rightarrow \mathfrak{m}$ with $\chi\left(d x_{i}\right) \mapsto h_{i} t^{h_{i}}$ where $\mathfrak{m}=\left(t^{h_{1}}, \ldots, t^{h_{n}}\right)$ is the graded maximal ideal of R.

Since rank $\Omega_{R / K}=$ rank $\mathfrak{m}=1$, it follows that $C=\operatorname{Ker} \chi$ is a torsion module. Thus we obtain the following exact sequence

$$
0 \rightarrow C \rightarrow \Omega_{R / K} \rightarrow \mathfrak{m} \rightarrow 0
$$

which induces the long exact sequence

$$
\operatorname{Hom}_{R}(C, R) \rightarrow \operatorname{Ext}_{R}^{1}(\mathfrak{m}, R) \rightarrow \operatorname{Ext}_{R}^{1}\left(\Omega_{R / K}, R\right)
$$

Since R is a 1-dimensional domain, R is Cohen-Macaulay. Thus $\operatorname{Hom}_{R}(C, R)=0$ and $\operatorname{Ext}_{R}^{1}(\mathfrak{m}, R) \simeq \mathfrak{m}^{-1} / R \neq 0$. It follows that $\operatorname{Ext}_{R}^{1}\left(\Omega_{R / K}, R\right) \neq 0$.

Since R is a 1-dimensional domain, R is Cohen-Macaulay. Thus $\operatorname{Hom}_{R}(C, R)=0$ and $\operatorname{Ext}_{R}^{1}(\mathfrak{m}, R) \simeq \mathfrak{m}^{-1} / R \neq 0$. It follows that $\operatorname{Ext}_{R}^{1}\left(\Omega_{R / K}, R\right) \neq 0$.
It is a big open conjecture whether a K-subalgebra $R \subset K[t]$ is rigid if and only if R is regular.

Since R is a 1-dimensional domain, R is Cohen-Macaulay. Thus $\operatorname{Hom}_{R}(C, R)=0$ and $\operatorname{Ext}_{R}^{1}(\mathfrak{m}, R) \simeq \mathfrak{m}^{-1} / R \neq 0$. It follows that $\operatorname{Ext}_{R}^{1}\left(\Omega_{R / K}, R\right) \neq 0$.
It is a big open conjecture whether a K-subalgebra $R \subset K[t]$ is rigid if and only if R is regular.

The conjecture is known to be correct if the embedding dimension of R is 3 , or R is Gorenstein of embedding dimension 4. The proof uses Hilbert-Burch and the Buchsbaum-Eisenbud structure theorem.

We want to compute the graded components $T^{1}(R)_{a}$ of $T^{1}(R)$ for $a \in \mathbb{Z} H$:

We want to compute the graded components $T^{1}(R)_{a}$ of $T^{1}(R)$ for $a \in \mathbb{Z} H$:

The cotangent module $T^{1}(R)$ is defined via the exact sequence

$$
\left(\Omega_{S / K} \otimes_{S} R\right)^{*} \xrightarrow{\delta^{*}} U^{*} \rightarrow T^{1}(R) \rightarrow 0
$$

of $\mathbb{Z} H$-graded modules, where M^{*} denotes the R-dual of the $\mathbb{Z} H$-graded R-module M.

We want to compute the graded components $T^{1}(R)_{a}$ of $T^{1}(R)$ for $a \in \mathbb{Z} H$:

The cotangent module $T^{1}(R)$ is defined via the exact sequence

$$
\left(\Omega_{S / K} \otimes_{S} R\right)^{*} \xrightarrow{\delta^{*}} U^{*} \rightarrow T^{1}(R) \rightarrow 0
$$

of $\mathbb{Z} H$-graded modules, where M^{*} denotes the R-dual of the $\mathbb{Z} H$-graded R-module M.

Let $f_{V_{1}}, \ldots, f_{V_{s}}$ be a system of generators of I_{H}. Observe that the elements $d f_{v_{1}}, \ldots, d f_{v_{s}}$ form a system of generators of U.

We want to compute the graded components $T^{1}(R)_{a}$ of $T^{1}(R)$ for $a \in \mathbb{Z} H$:

The cotangent module $T^{1}(R)$ is defined via the exact sequence

$$
\left(\Omega_{S / K} \otimes_{S} R\right)^{*} \xrightarrow{\delta^{*}} U^{*} \rightarrow T^{1}(R) \rightarrow 0
$$

of $\mathbb{Z H}$-graded modules, where M^{*} denotes the R-dual of the $\mathbb{Z} H$-graded R-module M.

Let $f_{V_{1}}, \ldots, f_{V_{s}}$ be a system of generators of I_{H}. Observe that the elements $d f_{v_{1}}, \ldots, d f_{v_{s}}$ form a system of generators of U.
Let $a \in \mathbb{Z} H$. We denote by $K L$ the K-subspace of K^{n} spanned by v_{1}, \ldots, v_{s} and by $K L_{a}$ the K-subspace of $K L$ spanned by the set of vectors $\left\{v_{i}: a+h\left(v_{i}\right) \notin H\right\}$.

We want to compute the graded components $T^{1}(R)_{a}$ of $T^{1}(R)$ for $a \in \mathbb{Z} H$:

The cotangent module $T^{1}(R)$ is defined via the exact sequence

$$
\left(\Omega_{S / K} \otimes_{S} R\right)^{*} \xrightarrow{\delta^{*}} U^{*} \rightarrow T^{1}(R) \rightarrow 0
$$

of $\mathbb{Z H}$-graded modules, where M^{*} denotes the R-dual of the $\mathbb{Z} H$-graded R-module M.

Let $f_{V_{1}}, \ldots, f_{V_{s}}$ be a system of generators of I_{H}. Observe that the elements $d f_{v_{1}}, \ldots, d f_{v_{s}}$ form a system of generators of U.
Let $a \in \mathbb{Z} H$. We denote by $K L$ the K-subspace of K^{n} spanned by v_{1}, \ldots, v_{s} and by $K L_{a}$ the K-subspace of $K L$ spanned by the set of vectors $\left\{v_{i}: a+h\left(v_{i}\right) \notin H\right\}$.
Then one shows that $\operatorname{dim}_{K}\left(U^{*}\right)_{a}=\operatorname{dim}_{K} K L-\operatorname{dim}_{K} K L_{a}$. for all $a \in \mathbb{Z} H$.

Similarly one obtains a description of $\operatorname{Im}\left(\delta^{*}\right)$.

Similarly one obtains a description of $\operatorname{Im}\left(\delta^{*}\right)$.
In conclusion one sees that all information which is needed to compute $\operatorname{dim}_{K} T^{1}(R)_{a}$ can be obtained from the $(s \times n)$-matrix

$$
A_{H}=\left(\begin{array}{cccc}
v_{1}(1) & v_{1}(2) & \ldots & v_{1}(n) \\
v_{2}(1) & v_{2}(2) & \ldots & v_{2}(n) \\
\vdots & \vdots & & \vdots \\
v_{s}(1) & v_{s}(2) & \ldots & v_{s}(n)
\end{array}\right) .
$$

Similarly one obtains a description of $\operatorname{Im}\left(\delta^{*}\right)$.
In conclusion one sees that all information which is needed to compute $\operatorname{dim}_{K} T^{1}(R)_{a}$ can be obtained from the $(s \times n)$-matrix

$$
A_{H}=\left(\begin{array}{cccc}
v_{1}(1) & v_{1}(2) & \ldots & v_{1}(n) \\
v_{2}(1) & v_{2}(2) & \ldots & v_{2}(n) \\
\vdots & \vdots & & \vdots \\
v_{s}(1) & v_{s}(2) & \ldots & v_{s}(n)
\end{array}\right) .
$$

Indeed, $\operatorname{dim}_{K} T^{1}(K[H])_{a}$ can be computed as follows: let $I=\operatorname{rank} A_{H}, I_{a}$ the rank of the submatrix of A_{H} whose rows are the ith rows of A_{H} for which $a+h\left(v_{i}\right) \notin H$, and let d_{a} be the rank of the submatrix of A_{H} whose columns are the j th columns of A_{H} for which $a+h_{j} \in H$.

Similarly one obtains a description of $\operatorname{Im}\left(\delta^{*}\right)$.
In conclusion one sees that all information which is needed to compute $\operatorname{dim}_{K} T^{1}(R)_{a}$ can be obtained from the $(s \times n)$-matrix

$$
A_{H}=\left(\begin{array}{cccc}
v_{1}(1) & v_{1}(2) & \ldots & v_{1}(n) \\
v_{2}(1) & v_{2}(2) & \ldots & v_{2}(n) \\
\vdots & \vdots & & \vdots \\
v_{s}(1) & v_{s}(2) & \ldots & v_{s}(n)
\end{array}\right) .
$$

Indeed, $\operatorname{dim}_{K} T^{1}(K[H])_{a}$ can be computed as follows: let $I=\operatorname{rank} A_{H}, I_{a}$ the rank of the submatrix of A_{H} whose rows are the i th rows of A_{H} for which $a+h\left(v_{i}\right) \notin H$, and let d_{a} be the rank of the submatrix of A_{H} whose columns are the j th columns of A_{H} for which $a+h_{j} \in H$. Then

$$
\operatorname{dim}_{K} T^{1}(K[H])_{a}=I-I_{a}-d_{a} .
$$

Similarly one obtains a description of $\operatorname{Im}\left(\delta^{*}\right)$.
In conclusion one sees that all information which is needed to compute $\operatorname{dim}_{K} T^{1}(R)_{a}$ can be obtained from the $(s \times n)$-matrix

$$
A_{H}=\left(\begin{array}{cccc}
v_{1}(1) & v_{1}(2) & \ldots & v_{1}(n) \\
v_{2}(1) & v_{2}(2) & \ldots & v_{2}(n) \\
\vdots & \vdots & & \vdots \\
v_{s}(1) & v_{s}(2) & \ldots & v_{s}(n)
\end{array}\right) .
$$

Indeed, $\operatorname{dim}_{K} T^{1}(K[H])_{a}$ can be computed as follows: let $I=\operatorname{rank} A_{H}, I_{a}$ the rank of the submatrix of A_{H} whose rows are the i th rows of A_{H} for which $a+h\left(v_{i}\right) \notin H$, and let d_{a} be the rank of the submatrix of A_{H} whose columns are the j th columns of A_{H} for which $a+h_{j} \in H$. Then

$$
\operatorname{dim}_{K} T^{1}(K[H])_{a}=I-I_{a}-d_{a} .
$$

Corollary. $\left.T^{1}(K[H])\right)_{a}=0$ for all $a \in H$.

Separated saturated lattices

Which affine semigroup ring $K[H]$ is obtained from another affine semigroup ring $K\left[H^{\prime}\right]$ by specialization, that is, by reduction modulo a regular element?

Separated saturated lattices

Which affine semigroup ring $K[H]$ is obtained from another affine semigroup ring $K\left[H^{\prime}\right]$ by specialization, that is, by reduction modulo a regular element?
Of course we can always choose $H^{\prime}=H \times \mathbb{N}$ in which case $K\left[H^{\prime}\right]$ is isomorphic to the polynomial ring $K[H][y]$ over $K[H]$ in the variable y, and $K[H]$ is obtained from $K\left[H^{\prime}\right]$ by reduction modulo the regular element y.

Separated saturated lattices

Which affine semigroup ring $K[H]$ is obtained from another affine semigroup ring $K\left[H^{\prime}\right]$ by specialization, that is, by reduction modulo a regular element?
Of course we can always choose $H^{\prime}=H \times \mathbb{N}$ in which case $K\left[H^{\prime}\right]$ is isomorphic to the polynomial ring $K[H][y]$ over $K[H]$ in the variable y, and $K[H]$ is obtained from $K\left[H^{\prime}\right]$ by reduction modulo the regular element y.

This trivial case we do not consider as a proper solution of finding an $K\left[H^{\prime}\right]$ that specializes to $K[H]$. If no non-trivial $K\left[H^{\prime}\right]$ exists, which specializes to $K[H]$, then H will be called inseparable and otherwise separable.

Let $\epsilon_{1}, \ldots, \epsilon_{n}$ be the canonical basis of \mathbb{Z}^{n} and $\epsilon_{1}, \ldots, \epsilon_{n}, \epsilon_{n+1}$ the canonical basis of \mathbb{Z}^{n+1}. Let $i \in[n]$. We denote by $\pi_{i}: \mathbb{Z}^{n+1} \rightarrow \mathbb{Z}^{n}$ the group homomorphism with $\pi_{i}\left(\epsilon_{j}\right)=\epsilon_{j}$ for $j=1, \ldots, n$ and $\pi_{i}\left(\epsilon_{n+1}\right)=\epsilon_{i}$.

Let $\epsilon_{1}, \ldots, \epsilon_{n}$ be the canonical basis of \mathbb{Z}^{n} and $\epsilon_{1}, \ldots, \epsilon_{n}, \epsilon_{n+1}$ the canonical basis of \mathbb{Z}^{n+1}. Let $i \in[n]$. We denote by $\pi_{i}: \mathbb{Z}^{n+1} \rightarrow \mathbb{Z}^{n}$ the group homomorphism with $\pi_{i}\left(\epsilon_{j}\right)=\epsilon_{j}$ for $j=1, \ldots, n$ and $\pi_{i}\left(\epsilon_{n+1}\right)=\epsilon_{i}$.

For convenience we denote again by π_{i} the K-algebra homomorphism $S\left[x_{n+1}\right] \rightarrow S$ with $\pi_{i}\left(x_{j}\right)=x_{j}$ for $j=1, \ldots, n$ and $\pi_{i}\left(x_{n+1}\right)=x_{i}$.

Let $\epsilon_{1}, \ldots, \epsilon_{n}$ be the canonical basis of \mathbb{Z}^{n} and $\epsilon_{1}, \ldots, \epsilon_{n}, \epsilon_{n+1}$ the canonical basis of \mathbb{Z}^{n+1}. Let $i \in[n]$. We denote by $\pi_{i}: \mathbb{Z}^{n+1} \rightarrow \mathbb{Z}^{n}$ the group homomorphism with $\pi_{i}\left(\epsilon_{j}\right)=\epsilon_{j}$ for $j=1, \ldots, n$ and $\pi_{i}\left(\epsilon_{n+1}\right)=\epsilon_{i}$.

For convenience we denote again by π_{i} the K-algebra homomorphism $S\left[x_{n+1}\right] \rightarrow S$ with $\pi_{i}\left(x_{j}\right)=x_{j}$ for $j=1, \ldots, n$ and $\pi_{i}\left(x_{n+1}\right)=x_{i}$.
Let $L \subset \mathbb{Z}^{n}$ be a saturated lattice. We say that L is i-separable for some $i \in[n]$, if there exists a saturated lattice $L^{\prime} \subset \mathbb{Z}^{n+1}$ such that
(i) $\operatorname{rank} L^{\prime}=\operatorname{rank} L$;

Let $\epsilon_{1}, \ldots, \epsilon_{n}$ be the canonical basis of \mathbb{Z}^{n} and $\epsilon_{1}, \ldots, \epsilon_{n}, \epsilon_{n+1}$ the canonical basis of \mathbb{Z}^{n+1}. Let $i \in[n]$. We denote by $\pi_{i}: \mathbb{Z}^{n+1} \rightarrow \mathbb{Z}^{n}$ the group homomorphism with $\pi_{i}\left(\epsilon_{j}\right)=\epsilon_{j}$ for $j=1, \ldots, n$ and $\pi_{i}\left(\epsilon_{n+1}\right)=\epsilon_{i}$.

For convenience we denote again by π_{i} the K-algebra homomorphism $S\left[x_{n+1}\right] \rightarrow S$ with $\pi_{i}\left(x_{j}\right)=x_{j}$ for $j=1, \ldots, n$ and $\pi_{i}\left(x_{n+1}\right)=x_{i}$.
Let $L \subset \mathbb{Z}^{n}$ be a saturated lattice. We say that L is i-separable for some $i \in[n]$, if there exists a saturated lattice $L^{\prime} \subset \mathbb{Z}^{n+1}$ such that
(i) $\operatorname{rank} L^{\prime}=\operatorname{rank} L$;
(ii) $\pi_{i}\left(I_{L^{\prime}}\right)=I_{L}$;

Let $\epsilon_{1}, \ldots, \epsilon_{n}$ be the canonical basis of \mathbb{Z}^{n} and $\epsilon_{1}, \ldots, \epsilon_{n}, \epsilon_{n+1}$ the canonical basis of \mathbb{Z}^{n+1}. Let $i \in[n]$. We denote by $\pi_{i}: \mathbb{Z}^{n+1} \rightarrow \mathbb{Z}^{n}$ the group homomorphism with $\pi_{i}\left(\epsilon_{j}\right)=\epsilon_{j}$ for $j=1, \ldots, n$ and $\pi_{i}\left(\epsilon_{n+1}\right)=\epsilon_{i}$.

For convenience we denote again by π_{i} the K-algebra homomorphism $S\left[x_{n+1}\right] \rightarrow S$ with $\pi_{i}\left(x_{j}\right)=x_{j}$ for $j=1, \ldots, n$ and $\pi_{i}\left(x_{n+1}\right)=x_{i}$.

Let $L \subset \mathbb{Z}^{n}$ be a saturated lattice. We say that L is i-separable for some $i \in[n]$, if there exists a saturated lattice $L^{\prime} \subset \mathbb{Z}^{n+1}$ such that
(i) $\operatorname{rank} L^{\prime}=\operatorname{rank} L$;
(ii) $\pi_{i}\left(I_{L^{\prime}}\right)=I_{L}$;
(iii) there exists a minimal system of generators $f_{w_{1}}, \ldots, f_{w_{s}}$ of $I_{L^{\prime}}$ such that the vectors $\left(w_{1}(n+1), \ldots, w_{s}(n+1)\right)$ and $\left(w_{1}(i), \ldots, w_{s}(i)\right)$ are linearly independent.

The lattice L is called inseparable if it is i-inseparable for all i. We also call a semigroup H and its toric ring inseparable if the relation lattice of H is inseparable.

The lattice L is called inseparable if it is i-inseparable for all i. We also call a semigroup H and its toric ring inseparable if the relation lattice of H is inseparable.
The lattice L^{\prime} satisfying (i)-(iii) is called an i-separation lattice for L.

The lattice L is called inseparable if it is i-inseparable for all i. We also call a semigroup H and its toric ring inseparable if the relation lattice of H is inseparable.

The lattice L^{\prime} satisfying (i)-(iii) is called an i-separation lattice for L.

If L^{\prime} is an i-separation lattice of L, then $x_{n+1}-x_{i}$ is a non-zerodivisor on $S\left[x_{n+1}\right] / I_{L^{\prime}}$ and

$$
\left(S\left[x_{n+1}\right] / I_{L^{\prime}}\right) /\left(x_{n+1}-x_{i}\right)\left(S\left[x_{n+1}\right] / I_{L^{\prime}}\right) \simeq S / I_{L}
$$

The lattice L is called inseparable if it is i-inseparable for all i. We also call a semigroup H and its toric ring inseparable if the relation lattice of H is inseparable.

The lattice L^{\prime} satisfying (i)-(iii) is called an i-separation lattice for L.

If L^{\prime} is an i-separation lattice of L, then $x_{n+1}-x_{i}$ is a non-zerodivisor on $S\left[x_{n+1}\right] / I_{L^{\prime}}$ and

$$
\left(S\left[x_{n+1}\right] / I_{L^{\prime}}\right) /\left(x_{n+1}-x_{i}\right)\left(S\left[x_{n+1}\right] / I_{L^{\prime}}\right) \simeq S / I_{L}
$$

Theorem. Let H be a positive affine semigroup which is minimally generated by $h_{1}, \ldots, h_{n}, L \subset \mathbb{Z}^{n}$ the relation lattice of H. Suppose that L is i-separable. Then $T^{1}(K[H])_{-h_{i}} \neq 0$. In particular, if $K[H]$ is standard graded, then H is inseparable, if $T^{1}(K[H])_{-1}=0$.

Proposition. Any numerical semigroup ring $K\left[t^{h_{1}}, t^{h_{2}}, t^{h_{3}}\right]$ is i-separable for $i=1,2,3$.

Proposition. Any numerical semigroup ring $K\left[t^{h_{1}}, t^{h_{2}}, t^{h_{3}}\right]$ is i-separable for $i=1,2,3$.

Is the same result true for any numerical semigroup?

Proposition. Any numerical semigroup ring $K\left[t^{h_{1}}, t^{h_{2}}, t^{h_{3}}\right]$ is i-separable for $i=1,2,3$.

Is the same result true for any numerical semigroup?
Theorem. (Bigdeli, H, Dancheng Lu) Let G be a bipartite graph with edge set $\left\{e_{1}, \ldots, e_{n}\right\}$, and let $R=K[G]$ be the edge ring of G. Then the following conditions are equivalent:
(a) The relation lattice of $H(G)$ is i-separable.
(b) $T^{1}(R)_{-h_{i}} \neq 0$.
(c) There exists a cycle C of G for which e_{i} is a chord, and there is no crossing path chord P of C with respect to e_{i}.

Proposition. Any numerical semigroup ring $K\left[t^{h_{1}}, t^{h_{2}}, t^{h_{3}}\right]$ is i-separable for $i=1,2,3$.

Is the same result true for any numerical semigroup?
Theorem. (Bigdeli, H, Dancheng Lu) Let G be a bipartite graph with edge set $\left\{e_{1}, \ldots, e_{n}\right\}$, and let $R=K[G]$ be the edge ring of G. Then the following conditions are equivalent:
(a) The relation lattice of $H(G)$ is i-separable.
(b) $T^{1}(R)_{-h_{i}} \neq 0$.
(c) There exists a cycle C of G for which e_{i} is a chord, and there is no crossing path chord P of C with respect to e_{i}.

It is widely open for which graphs G, the edge ring $K[G]$ is rigid.

Problem 1. Let \mathfrak{m} be the graded maximal ideal of $S=K\left[x_{1}, \ldots, x_{n}\right]$. Compute the module $T^{1}\left(S / \mathfrak{m}^{2}\right)$.
Problem 2. Let $I \subset \mathfrak{m}^{2}$ be a graded ideal with $\operatorname{dim} S / I=0$. Do we always have that $T^{1}(R) \neq 0$?
Problem 3. Let $R=K[H]$ be a numerical semigroup ring. Show that $T^{1}(R)$ is module of finite length.
Problem 4. Compute the length of $T^{1}(R)$ when $R=K\left[t^{h_{1}}, t^{h_{2}}\right]$.

