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Let K be a field, and ∆ be a simplicial complex on the vertex set
[n].

It is an open problem to classify the rigid simplicial complexes, that
is, simplicial complexes ∆ with the property that the
Stanley-Reisner ring K [∆] is rigid.

From Lecture 3 we know that K [∆] is rigid if and only if
T 1(K [∆]) = 0.

Since T 1(K [∆]) is Z
n-graded, it follows that T 1(K [∆]) = 0 if and

only if T 1(K [∆])c = 0 for all c ∈ Z
n.
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The field K will be fixed, and we write T 1(∆) for T 1(K [∆]), in
order to simplify notation.

We write c ∈ Z
n as a − b with a, b ∈ N

n and supp a ∩ supp b = ∅,
and set A = supp a and B = supp b. Here N denotes the set of
non-negative integers, and the support of a vector a ∈ N

n is
defined to be the set supp a = {i ∈ [n] : ai 6= 0}.

Theorem. (Altmann, Christophersen) (a) T 1(∆)a−b = 0 if
b 6∈ {0, 1}n.

(b) Assuming b ∈ {0, 1}n, then T 1(∆)a−b depends only on A and
B.
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Recall that for a subset A of [n], the link of A is defined to be

link∆ A = {F ∈ ∆ F ∩ A = ∅, F ∪ A ∈ ∆}

with vertex set V (link∆ A) = [n] \ A.

Theorem. (Altmann, Christophersen)

T 1(∆)a−b = T 1(link∆ A)−b

.

We say that ∆ is ∅-rigid, if T 1(∆)−b = 0 for all b ∈ {0, 1}n.
Thus, ∆ is rigid, if and only if all its links are ∅-rigid.
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then the join ∆1 ∗ ∆2 is a simplicial complex on the vertex set
V (∆1) ∪ V (∆2) with faces {F ∪ G : F ∈ ∆1, G ∈ ∆2}.

Theorem. (Altmann, Bigdeli, H, Danchen Lu) (a) Let
I∆1

⊆ K [x1, . . . , xn] and I∆2
⊆ K [y1, . . . , ym]. Then

T 1(∆1 ∗ ∆2) = T 1(∆1)[y1, . . . , ym] ⊕ T 1(∆2)[x1, . . . , xn].

In particular ∆1 ∗ ∆2 is rigid if and only if ∆1 and ∆2 are rigid.

(b) Let ∆1 6= {∅} and ∆2 6= {∅} be simplicial complexes with
disjoint vertex sets, and asssume that for i = 1, 2, {j} ∈ ∆i for all
j ∈ V (∆i). Then the following conditions are equivalent:

(1) ∆1 ∪ ∆2 is rigid;

(2) ∆1 ∪ ∆2 is ∅-rigid;

(3) ∆1 and ∆2 are simplices with dim∆1 + dim∆2 > 0.
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Rigid graphs

The previous theorem implies that ∆ must be connected if it is
rigid, unless dim∆ = 0.

As said before, a classification of the rigid simplicial complexes is
yet unknown.

Here we now discuss the case that ∆ = ∆(G) where G is a graph
on [n] and ∆(G) is the simplicial complex of independent sets of G .

Thus if I(G) is the edge ideal of G , then I∆(G) = I(G).

We call G rigid, if K [∆(G)](= S/I(G)) is rigid.

For i ∈ G we defined in Lecture 4, the neighborhood
N(i) = {j : {i , j} ∈ E (G)}, and denoted by G (i) the
complementary graph of the restriction GN(i) of G to N(i).
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We also define the sets

N(A) =
⋃

i∈A

N(i)

is called the neighborhood of A (in G), and the set

N[A] = A ∪ N(A)

is called the closed neighborhood of A (in G).

We have the following criterion of rigidity of G .

Theorem. G is rigid if and only if for all independent sets
A ⊆ V (G) one has:

(α) (G \ N[A])(i) is connected for all i ∈ [n] \ N[A];

(β) G \ N[A] contains no isolated edge.
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By far not all bipartite graphs are rigid.

Proposition. Let G be a Cohen–Macaulay bipartite graph. Then
G is not rigid.

Proof. If G is not connected, then ∆(G) is a join. Thus G is rigid
(resp. CM) if and only if each connected component is rigid (resp.
CM). Thus we assume that G is connected. Since G is
Cohen–Macaulay, after a suitable relabeling of its vertices, G arises
from a finite poset P = {p1, . . . , pn} as follows:
V (G) = {p1, . . . , pn, q1, . . . , qn} and E (G) = {{pi , qj} pi ≤ pj}.
We may assume that p1 is a minimal element in P. Let
A = {p2, . . . , pn}. Then N[A] = {p2, . . . , pn, q2, . . . , qn}, and
G \ N[A] = {p1, q1}. It follows from (β) that G is not rigid. �
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A vertex v of G is called a free vertex if deg v = 1, and an edge e

is called a leaf if it has a free vertex. An edge e of G is called a
branch, if there exists a leaf e′ with e′ 6= e such that e ∩ e′ 6= ∅.

Theorem. (Altmann, Bigdeli, H, Dancheng Lu) Let G be a graph
on the vertex set [n] such that G does not contain any induced
cycle of length 4, 5 or 6. Then G is rigid if and only if each edge of
G is a branch and each vertex of a 3-cycle of G belongs to a leaf.

Corollary. Let G be a chordal graph. Then G is rigid if and only if
each edge of G is a branch and each vertex of a 3-cycle of G

belongs to a leaf.

Corollary. Suppose that all cycles of G have length ≥ 7 (which for
example is the case when G is a forest). Then G is rigid if and only
if each edge of G is a branch.
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The toric ring K [H] associated with H is the K -subalgebra of the
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1

· · · t
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m for
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Let S = K [x1, . . . , xn] be the polynomial ring over K in the
variables x1, . . . , xn. The K -algebra R = K [H] has a presentation
S → R with xi 7→ thi for i = 1, . . . , n.

The kernel IH ⊂ S of this map is the toric ideal attached to H.
Corresponding to this presentation of K [H] there is a presentation
N

n → H of H which can be extended to the group homomorphism
Z

n → Z
m with εi 7→ hi for i = 1, . . . , n, where ε1, . . . , εn denotes

the canonical basis of Zn.
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Let L ⊂ Z
n be the kernel of this group homomorphism. The lattice

L is called the relation lattice of H. As we know, L is a free
abelian group and Z

n/L is torsion-free.

Moreover, IH is generated by the binomials fv with v ∈ L, where
fv = xv+ − xv− .

We define an H-grading on S by setting deg xi = hi . Then IH is a
graded ideal with deg fv = h(v), where

h(v) =
∑

i , v(i)≥0

v(i)hi (=
∑

i , v(i)≤0

−v(i)hi).
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Let v1, . . . , vr be a basis of L. Since IH is a prime ideal we may
localize S with respect to this prime ideal and obtain

IHSIH = (fv1
, . . . , fvr )SIH .

In particular, we see that

height IH = rank L.

We let R = K [H], and let ZH denote the associated group of H,

that is, the smallest subgroup of Zm containing H.

The cotangent module T (K [H]) admits a natural ZH-grading.
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semigroup. Then R = K [H] = K [th1 , . . . , thn ] ⊂ K [t] with
h1 < h2 < . . . < hn a minimal set of generators of H.

We claim that R is rigid, if and only if n = 1, that is, if and only if
R is regular.

There is an epimorphism χ : ΩR/K → m with χ(dxi) 7→ hi t
hi where

m = (th1 , . . . , thn) is the graded maximal ideal of R.

Since rankΩR/K = rankm = 1, it follows that C = Ker χ is a
torsion module. Thus we obtain the following exact sequence

0 → C → ΩR/K → m → 0,

which induces the long exact sequence

HomR(C , R) → Ext1

R(m, R) → Ext1

R(ΩR/K , R).



Since R is a 1-dimensional domain, R is Cohen-Macaulay. Thus
HomR(C , R) = 0 and Ext1
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Since R is a 1-dimensional domain, R is Cohen-Macaulay. Thus
HomR(C , R) = 0 and Ext1

R(m, R) ' m
−1/R 6= 0. It follows that

Ext1

R(ΩR/K , R) 6= 0.

It is a big open conjecture whether a K -subalgebra R ⊂ K [t] is
rigid if and only if R is regular.

The conjecture is known to be correct if the embedding dimension
of R is 3, or R is Gorenstein of embedding dimension 4. The proof
uses Hilbert-Burch and the Buchsbaum-Eisenbud structure
theorem.
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We want to compute the graded components T 1(R)a of T 1(R) for
a ∈ ZH:

The cotangent module T 1(R) is defined via the exact sequence

(ΩS/K ⊗S R)∗ δ∗

−−−−→ U∗ → T 1(R) → 0

of ZH-graded modules, where M∗ denotes the R-dual of the
ZH-graded R-module M.

Let fv1
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Indeed, dimK T 1(K [H])a can be computed as follows: let
l = rank AH , la the rank of the submatrix of AH whose rows are
the ith rows of AH for which a + h(vi ) 6∈ H, and let da be the rank
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dimK T 1(K [H])a = l − la − da.

Corollary. T 1(K [H]))a = 0 for all a ∈ H.
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Of course we can always choose H ′ = H × N in which case K [H ′]
is isomorphic to the polynomial ring K [H][y ] over K [H] in the
variable y , and K [H] is obtained from K [H ′] by reduction modulo
the regular element y .

This trivial case we do not consider as a proper solution of finding
an K [H ′] that specializes to K [H]. If no non-trivial K [H ′] exists,
which specializes to K [H], then H will be called inseparable and
otherwise separable.
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canonical basis of Zn+1. Let i ∈ [n]. We denote by
πi : Z

n+1 → Z
n the group homomorphism with πi(εj) = εj for

j = 1, . . . , n and πi(εn+1) = εi .

For convenience we denote again by πi the K -algebra
homomorphism S[xn+1] → S with πi(xj) = xj for j = 1, . . . , n and
πi(xn+1) = xi .

Let L ⊂ Z
n be a saturated lattice. We say that L is i-separable for

some i ∈ [n], if there exists a saturated lattice L′ ⊂ Z
n+1 such that

(i) rank L′ = rank L;

(ii) πi(IL′) = IL;

(iii) there exists a minimal system of generators fw1
, . . . , fws of IL′

such that the vectors (w1(n + 1), . . . , ws(n + 1)) and
(w1(i), . . . , ws(i)) are linearly independent.
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The lattice L is called inseparable if it is i-inseparable for all i . We
also call a semigroup H and its toric ring inseparable if the relation
lattice of H is inseparable.

The lattice L′ satisfying (i)-(iii) is called an i-separation lattice for
L.

If L′ is an i-separation lattice of L, then xn+1 − xi is a
non-zerodivisor on S[xn+1]/IL′ and

(S[xn+1]/IL′)/(xn+1 − xi)(S[xn+1]/IL′) ' S/IL.

Theorem. Let H be a positive affine semigroup which is minimally
generated by h1, . . . , hn, L ⊂ Z

n the relation lattice of H. Suppose
that L is i-separable. Then T 1(K [H])−hi

6= 0. In particular, if
K [H] is standard graded, then H is inseparable, if
T 1(K [H])−1 = 0.
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(c) There exists a cycle C of G for which ei is a chord, and there
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Theorem. (Bigdeli, H, Dancheng Lu) Let G be a bipartite graph
with edge set {e1, . . . , en}, and let R = K [G ] be the edge ring of
G . Then the following conditions are equivalent:

(a) The relation lattice of H(G) is i-separable.

(b) T 1(R)−hi
6= 0.

(c) There exists a cycle C of G for which ei is a chord, and there
is no crossing path chord P of C with respect to ei .

It is widely open for which graphs G , the edge ring K [G ] is rigid.



Problem 1. Let m be the graded maximal ideal of
S = K [x1, . . . , xn]. Compute the module T 1(S/m2).

Problem 2. Let I ⊂ m
2 be a graded ideal with dim S/I = 0. Do

we always have that T 1(R) 6= 0?

Problem 3. Let R = K [H] be a numerical semigroup ring. Show
that T 1(R) is module of finite length.

Problem 4. Compute the length of T 1(R) when R = K [th1 , th2 ].


