Lefschetz properties for balanced 3-polytopes

Martina Juhnke-Kubitzke
(joint work with David Cook II, Satoshi Murai and Eran Nevo)

Institute of Mathematics, University of Osnabrück
August 20th, 2016

Balanced simplicial complexes and polytopes

A $(d-1)$-dimensional simplicial complex Δ on vertex set Ω is balanced, if

Balanced simplicial complexes and polytopes

A $(d-1)$-dimensional simplicial complex Δ on vertex set Ω is balanced, if

- the 1-skeleton is Δd-colorable.

Balanced simplicial complexes and polytopes

A $(d-1)$-dimensional simplicial complex Δ on vertex set Ω is balanced, if

- the 1-skeleton is Δd-colorable.
\Leftrightarrow There exists a map (coloring)

$$
\phi: \Omega \rightarrow\{1,2, \ldots, d\}
$$

such that $\phi(i) \neq \phi(j)$ for all $\{i, j\} \in \Delta$.

Balanced simplicial complexes and polytopes

A $(d-1)$-dimensional simplicial complex Δ on vertex set Ω is balanced, if

- the 1 -skeleton is Δd-colorable.
\Leftrightarrow There exists a map (coloring)

$$
\phi: \Omega \rightarrow\{1,2, \ldots, d\}
$$

such that $\phi(i) \neq \phi(j)$ for all $\{i, j\} \in \Delta$.
A simplicial d-dimensional polytope is balanced, if its boundary complex is balanced.

The boundary of the d-simplex

For $d \in \mathbb{N}$ let $\partial \Delta_{d}=\{F: F \subsetneq\{1,2, \ldots, d+1\}\}$ be the boundary of the d-simplex Δ_{d}.

The boundary of the d-simplex

For $d \in \mathbb{N}$ let $\partial \Delta_{d}=\{F: F \subsetneq\{1,2, \ldots, d+1\}\}$ be the boundary of the d-simplex Δ_{d}.

The boundary of the d-simplex

For $d \in \mathbb{N}$ let $\partial \Delta_{d}=\{F: F \subsetneq\{1,2, \ldots, d+1\}\}$ be the boundary of the d-simplex Δ_{d}.

The boundary of the d-simplex

For $d \in \mathbb{N}$ let $\partial \Delta_{d}=\{F: F \subsetneq\{1,2, \ldots, d+1\}\}$ be the boundary of the d-simplex Δ_{d}.

The boundary of the d-simplex

For $d \in \mathbb{N}$ let $\partial \Delta_{d}=\{F: F \subsetneq\{1,2, \ldots, d+1\}\}$ be the boundary of the d-simplex Δ_{d}.

The boundary of the d-simplex

For $d \in \mathbb{N}$ let $\partial \Delta_{d}=\{F: F \subsetneq\{1,2, \ldots, d+1\}\}$ be the boundary of the d-simplex Δ_{d}.

As the 1-skeleton of $\partial \Delta_{d}$ is a complete graph on $d+1$ vertices, a proper coloring uses at least $d+1$ colors.

The boundary of the d-simplex

For $d \in \mathbb{N}$ let $\partial \Delta_{d}=\{F: F \subsetneq\{1,2, \ldots, d+1\}\}$ be the boundary of the d-simplex Δ_{d}.

As the 1-skeleton of $\partial \Delta_{d}$ is a complete graph on $d+1$ vertices, a proper coloring uses at least $d+1$ colors.
$\Rightarrow \partial \Delta_{d}$ is not balanced.

The d-dimensional cross-polytope

Let $\mathcal{C}_{d}=\operatorname{conv}\left(\pm \mathbf{e}_{i}: 1 \leq i \leq d\right)$ be the d-dimensional cross-polytope and let $\partial \mathcal{C}_{d}$ be its boundary.

The d-dimensional cross-polytope

Let $\mathcal{C}_{d}=\operatorname{conv}\left(\pm \mathbf{e}_{i}: 1 \leq i \leq d\right)$ be the d-dimensional cross-polytope and let $\partial \mathcal{C}_{d}$ be its boundary.

The d-dimensional cross-polytope

Let $\mathcal{C}_{d}=\operatorname{conv}\left(\pm \mathbf{e}_{i}: 1 \leq i \leq d\right)$ be the d-dimensional cross-polytope and let $\partial \mathcal{C}_{d}$ be its boundary.

The d-dimensional cross-polytope

Let $\mathcal{C}_{d}=\operatorname{conv}\left(\pm \mathbf{e}_{i}: 1 \leq i \leq d\right)$ be the d-dimensional cross-polytope and let $\partial \mathcal{C}_{d}$ be its boundary.

The d-dimensional cross-polytope

Let $\mathcal{C}_{d}=\operatorname{conv}\left(\pm \mathbf{e}_{i}: 1 \leq i \leq d\right)$ be the d-dimensional cross-polytope and let $\partial \mathcal{C}_{d}$ be its boundary.

The map

$$
\left\{ \pm \mathbf{e}_{i}: 1 \leq i \leq d\right\} \rightarrow\{1,2, \ldots, d\}: \pm \mathbf{e}_{i} \mapsto i
$$

defines a coloring of $\partial \mathcal{C}_{d}$ with d colors.

The d-dimensional cross-polytope

Let $\mathcal{C}_{d}=\operatorname{conv}\left(\pm \mathbf{e}_{i}: 1 \leq i \leq d\right)$ be the d-dimensional cross-polytope and let $\partial \mathcal{C}_{d}$ be its boundary.

The map

$$
\left\{ \pm \mathbf{e}_{i}: 1 \leq i \leq d\right\} \rightarrow\{1,2, \ldots, d\}: \pm \mathbf{e}_{i} \mapsto i
$$

defines a coloring of $\partial \mathcal{C}_{d}$ with d colors.
$\Rightarrow \mathcal{C}_{d}$ is balanced.

Lefschetz properties

\mathbb{F} infinite field
$A=A_{0} \oplus A_{1} \oplus \cdots \oplus A_{s}$ Artinian Gorenstein standard graded \mathbb{F}-algebra

Lefschetz properties

\mathbb{F} infinite field
$A=A_{0} \oplus A_{1} \oplus \cdots \oplus A_{s}$ Artinian Gorenstein standard graded \mathbb{F}-algebra
A has the strong Lefschetz property if there exists a linear form $\omega \in A_{1}$ such that the multiplication map

$$
\begin{aligned}
\times \omega^{s-2 \ell}: A_{\ell} & \rightarrow A_{s-\ell} \\
f & \mapsto \omega^{s-2 \ell} \cdot f
\end{aligned}
$$

is bijective for $0 \leq \ell<\frac{s}{2}$.

Lefschetz properties

\mathbb{F} infinite field
$A=A_{0} \oplus A_{1} \oplus \cdots \oplus A_{s}$ Artinian Gorenstein standard graded \mathbb{F}-algebra
A has the strong Lefschetz property if there exists a linear form $\omega \in A_{1}$ such that the multiplication map

$$
\begin{aligned}
\times \omega^{s-2 \ell}: A_{\ell} & \rightarrow A_{s-\ell} \\
f & \mapsto \omega^{s-2 \ell} \cdot f
\end{aligned}
$$

is bijective for $0 \leq \ell<\frac{s}{2}$.
Lefschetz properties are a tool to obtain information/conditions on the Hilbert function of A.

Lefschetz properties for simplicial polytopes

Δ boundary complex of a simplicial d-polytope

Lefschetz properties for simplicial polytopes

Δ boundary complex of a simplicial d-polytope $\mathbb{F}[\Delta]$ Stanley-Reisner ring of Δ
$\Theta=\left\{\theta_{1}, \ldots, \theta_{d}\right\}$ linear system of parameters of $\mathbb{F}[\Delta]$

Lefschetz properties for simplicial polytopes

Δ boundary complex of a simplicial d-polytope
$\mathbb{F}[\Delta]$ Stanley-Reisner ring of Δ
$\Theta=\left\{\theta_{1}, \ldots, \theta_{d}\right\}$ linear system of parameters of $\mathbb{F}[\Delta]$
Observe: $\mathbb{F}[\Delta] / \Theta \mathbb{F}[\Delta]$ is an Artinian Gorenstein \mathbb{F}-algebra.

Lefschetz properties for simplicial polytopes

Δ boundary complex of a simplicial d-polytope
$\mathbb{F}[\Delta]$ Stanley-Reisner ring of Δ
$\Theta=\left\{\theta_{1}, \ldots, \theta_{d}\right\}$ linear system of parameters of $\mathbb{F}[\Delta]$
Observe: $\mathbb{F}[\Delta] / \Theta \mathbb{F}[\Delta]$ is an Artinian Gorenstein \mathbb{F}-algebra.
By the Hard Lefschetz Theorem:
$\mathbb{F}[\Delta] / \Theta \mathbb{F}[\Delta]$ has the strong Lefschetz property if Θ is generic and if $\operatorname{char}(\mathbb{F})=0$.

Lefschetz properties for simplicial polytopes

Δ boundary complex of a simplicial d-polytope
$\mathbb{F}[\Delta]$ Stanley-Reisner ring of Δ
$\Theta=\left\{\theta_{1}, \ldots, \theta_{d}\right\}$ linear system of parameters of $\mathbb{F}[\Delta]$
Observe: $\mathbb{F}[\Delta] / \Theta \mathbb{F}[\Delta]$ is an Artinian Gorenstein \mathbb{F}-algebra.
By the Hard Lefschetz Theorem:
$\mathbb{F}[\Delta] / \Theta \mathbb{F}[\Delta]$ has the strong Lefschetz property if Θ is generic and if $\operatorname{char}(\mathbb{F})=0$.

Question:

Does $\mathbb{F}[\Delta] / \Theta \mathbb{F}[\Delta]$ have the strong Lefschetz property if Θ is not generic?

Back to balanced simplicial polytopes

Δ boundary complex of a simplicial d-polytope on vertex set V $\kappa: V \rightarrow\{1,2, \ldots, d\}$ coloring of Δ

Back to balanced simplicial polytopes

Δ boundary complex of a simplicial d-polytope on vertex set V $\kappa: V \rightarrow\{1,2, \ldots, d\}$ coloring of Δ

Define

$$
\theta_{\ell}:=\sum_{v \in V, \kappa(v)=\ell} x_{v} \in \mathbb{F}[\Delta]
$$

for $1 \leq \ell \leq d$.

Back to balanced simplicial polytopes

Δ boundary complex of a simplicial d-polytope on vertex set V $\kappa: V \rightarrow\{1,2, \ldots, d\}$ coloring of Δ

Define

$$
\theta_{\ell}:=\sum_{v \in V, \kappa(v)=\ell} x_{v} \in \mathbb{F}[\Delta]
$$

for $1 \leq \ell \leq d$.
Stanley: $\Theta^{(c)}:=\left\{\theta_{1}, \theta_{2}, \ldots, \theta_{d}\right\}$ is a linear system of parameters for $\mathbb{F}[\Delta]$.

Back to balanced simplicial polytopes

Δ boundary complex of a simplicial d-polytope on vertex set V $\kappa: V \rightarrow\{1,2, \ldots, d\}$ coloring of Δ

Define

$$
\theta_{\ell}:=\sum_{v \in V, \kappa(v)=\ell} x_{v} \in \mathbb{F}[\Delta]
$$

for $1 \leq \ell \leq d$.
Stanley: $\Theta^{(c)}:=\left\{\theta_{1}, \theta_{2}, \ldots, \theta_{d}\right\}$ is a linear system of parameters for $\mathbb{F}[\Delta]$. Note: A colored linear system of parameters is unique up to permutation of $\{1,2, \ldots, d\}$.

Back to balanced simplicial polytopes

Δ boundary complex of a simplicial d-polytope on vertex set V $\kappa: V \rightarrow\{1,2, \ldots, d\}$ coloring of Δ

Define

$$
\theta_{\ell}:=\sum_{v \in V, \kappa(v)=\ell} x_{v} \in \mathbb{F}[\Delta]
$$

for $1 \leq \ell \leq d$.
Stanley: $\Theta^{(c)}:=\left\{\theta_{1}, \theta_{2}, \ldots, \theta_{d}\right\}$ is a linear system of parameters for $\mathbb{F}[\Delta]$. Note: A colored linear system of parameters is unique up to permutation of $\{1,2, \ldots, d\}$.

Question

Does $\mathbb{F}[\Delta] / \Theta^{(c)} \mathbb{F}[\Delta]$ have the strong Lefschetz property?

Back to balanced simplicial polytopes

Theorem (Cook II, J.-K., Murai, Nevo)

Let \mathbb{F} be an infinite field with $\operatorname{char}(\mathbb{F}) \neq 2,3$.
Let Δ be the boundary complex of a simplicial d-polytope, and let $\Theta^{(c)}$ be the colored linear system of parameters of $\mathbb{F}[\Delta]$.

Back to balanced simplicial polytopes

Theorem (Cook II, J.-K., Murai, Nevo)

Let \mathbb{F} be an infinite field with $\operatorname{char}(\mathbb{F}) \neq 2,3$.
Let Δ be the boundary complex of a simplicial d-polytope, and let $\Theta^{(c)}$ be the colored linear system of parameters of $\mathbb{F}[\Delta]$.
Then $\mathbb{F}[\Delta] / \Theta_{c} \mathbb{F}[\Delta]$ has the strong Lefschetz property.

Back to balanced simplicial polytopes

Theorem (Cook II, J.-K., Murai, Nevo)

Let \mathbb{F} be an infinite field with $\operatorname{char}(\mathbb{F}) \neq 2,3$.
Let Δ be the boundary complex of a simplicial d-polytope, and let $\Theta^{(c)}$ be the colored linear system of parameters of $\mathbb{F}[\Delta]$.
Then $\mathbb{F}[\Delta] / \Theta_{c} \mathbb{F}[\Delta]$ has the strong Lefschetz property.
Note:
If $\operatorname{char}(\mathbb{F}) \in\{2,3\}$, then $\omega^{3}=0$ for any linear form $\omega \in \mathbb{F}[\Delta] / \Theta^{(c)} \mathbb{F}[\Delta]$.

Idea of the proof

Let Δ be a simplicial 2-sphere. Then one of the following 3 cases occurs:

Idea of the proof

Let Δ be a simplicial 2-sphere. Then one of the following 3 cases occurs:
(1) Δ is the boundary complex of the 3 -dimensional cross-polytope \mathcal{C}_{3}.

Idea of the proof

Let Δ be a simplicial 2-sphere. Then one of the following 3 cases occurs:
(1) Δ is the boundary complex of the 3 -dimensional cross-polytope \mathcal{C}_{3}.
(2) Δ has a missing triangle, in which case Δ is the balanced connected sum of two "smaller" 2-spheres.

Idea of the proof

Let Δ be a simplicial 2-sphere. Then one of the following 3 cases occurs:
(1) Δ is the boundary complex of the 3 -dimensional cross-polytope \mathcal{C}_{3}.
(2) Δ has a missing triangle, in which case Δ is the balanced connected sum of two "smaller" 2-spheres.
(3) One can perform a balanced contraction:

Idea of the proof

Let Δ be a simplicial 2 -sphere. Then one of the following 3 cases occurs:
(1) Δ is the boundary complex of the 3 -dimensional cross-polytope \mathcal{C}_{3}.
(2) Δ has a missing triangle, in which case Δ is the balanced connected sum of two "smaller" 2-spheres.
(3) One can perform a balanced contraction:

Verify the claim for \mathcal{C}_{3} and show that balanced connected sum and inverse balanced contraction preserve the colored strong Lefschetz property.

$(2,1)$-balanced simplicial complexes

A 2-dimensional simplicial complex on vertex set V is $(2,1)$-balanced if there exists a coloring

$$
\kappa: V \rightarrow\{\text { blue, red }\}
$$

such that for any facet two of its vertices are colored blue and one vertex is colored red.

$(2,1)$-balanced simplicial complexes

A 2-dimensional simplicial complex on vertex set V is $(2,1)$-balanced if there exists a coloring

$$
\kappa: V \rightarrow\{\text { blue, red }\}
$$

such that for any facet two of its vertices are colored blue and one vertex is colored red.

Example

Let Δ be the boundary of the simplicial 3-polytope obtained by subdividing each facet of the 3 -simplex in 3 triangles by adding a new (red) vertex.

(2,1)-balanced simplicial complexes

A 2-dimensional simplicial complex on vertex set V is $(2,1)$-balanced if there exists a coloring

$$
\kappa: V \rightarrow\{\text { blue, red }\}
$$

such that for any facet two of its vertices are colored blue and one vertex is colored red.

Stanley showed, that if Δ is $(2,1)$-balanced, there exists a $(2,1)$-colored linear system of parameters $\Theta=\left\{\theta_{1}, \theta_{2}, \theta_{3}\right\}$ for $\mathbb{F}[\Delta]$ such that

- θ_{1} and θ_{2} are linear combinations of blue vertices, and
- θ_{3} is a linear combination of red vertices.

$(2,1)$-balanced simplicial complexes

A 2-dimensional simplicial complex on vertex set V is $(2,1)$-balanced if there exists a coloring

$$
\kappa: V \rightarrow\{\text { blue, red }\}
$$

such that for any facet two of its vertices are colored blue and one vertex is colored red.

Stanley showed, that if Δ is $(2,1)$-balanced, there exists a $(2,1)$-colored linear system of parameters $\Theta=\left\{\theta_{1}, \theta_{2}, \theta_{3}\right\}$ for $\mathbb{F}[\Delta]$ such that

- θ_{1} and θ_{2} are linear combinations of blue vertices, and
- θ_{3} is a linear combination of red vertices.

Question

Is there an analogous result as for balanced simplicial polytopes?

$(2,1)$-balanced simplicial polytopes

Theorem (Cook II, J.-K., Murai, Nevo)

Let \mathbb{F} be an infinite field with $\operatorname{char}(\mathbb{F}) \neq 2,3$.
Let Δ be the boundary of a simplicial polytope that is $(2,1)$-balanced.

(2,1)-balanced simplicial polytopes

Theorem (Cook II, J.-K., Murai, Nevo)

Let \mathbb{F} be an infinite field with $\operatorname{char}(\mathbb{F}) \neq 2,3$.
Let Δ be the boundary of a simplicial polytope that is $(2,1)$-balanced.
Let U be the set of the blue vertices of Δ for a given coloring.

(2,1)-balanced simplicial polytopes

Theorem (Cook II, J.-K., Murai, Nevo)

Let \mathbb{F} be an infinite field with $\operatorname{char}(\mathbb{F}) \neq 2,3$.
Let Δ be the boundary of a simplicial polytope that is $(2,1)$-balanced.
Let U be the set of the blue vertices of Δ for a given coloring.
The following conditions are equivalent:

(2, 1)-balanced simplicial polytopes

Theorem (Cook II, J.-K., Murai, Nevo)

Let \mathbb{F} be an infinite field with $\operatorname{char}(\mathbb{F}) \neq 2,3$.
Let Δ be the boundary of a simplicial polytope that is $(2,1)$-balanced.
Let U be the set of the blue vertices of Δ for a given coloring.
The following conditions are equivalent:
(1) There is a $(2,1)$-colored linear system of parameters Θ for $\mathbb{F}[\Delta]$ such that $\mathbb{F}[\Delta] /(\Theta)$ has the strong Lefschetz property.

(2, 1)-balanced simplicial polytopes

Theorem (Cook II, J.-K., Murai, Nevo)

Let \mathbb{F} be an infinite field with $\operatorname{char}(\mathbb{F}) \neq 2,3$.
Let Δ be the boundary of a simplicial polytope that is $(2,1)$-balanced.
Let U be the set of the blue vertices of Δ for a given coloring.
The following conditions are equivalent:
(1) There is a $(2,1)$-colored linear system of parameters Θ for $\mathbb{F}[\Delta]$ such that $\mathbb{F}[\Delta] /(\Theta)$ has the strong Lefschetz property.
(2) For any subset $W \subseteq U$ with $|W| \geq 2$, the induced subcomplex

$$
\Delta_{W}=\{F \in \Delta: F \subseteq W\}
$$

has at most $2|W|-3$ edges.

Example

Let Δ be the boundary of the simplicial 3-polytope obtained by subdividing each facet of the 3 -simplex in 3 triangles by adding a new (red) vertex.

Example

Let Δ be the boundary of the simplicial 3-polytope obtained by subdividing each facet of the 3 -simplex in 3 triangles by adding a new (red) vertex.

If one restricts to all blue vertices, one obtains the boundary of the 3-simplex, which has

$$
6>5=2 \cdot 4-3
$$

many edges.

Example

Let Δ be the boundary of the simplicial 3-polytope obtained by subdividing each facet of the 3 -simplex in 3 triangles by adding a new (red) vertex.

If one restricts to all blue vertices, one obtains the boundary of the 3-simplex, which has

$$
6>5=2 \cdot 4-3
$$

many edges. Hence, Δ does not have the strong Lefschetz property w.r.t. a $(2,1)$-colored linear system of parameters.

Thank you for your attention!

