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Fruit fly wings

Normal fly wings [images from David Houle’s lab]:
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Fruit fly wings

Normal fly wings [images from David Houle’s lab]:

Topologically abnormal veins:
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Biological background

What generates topological novelty?
[Houle, et al.]: selecting for certain continuous wing vein deformations yields

• skew toward more oddly shaped wings, but also
• much higher rate of topological novelty

Hypothesis. Topological novelty arises when directional selection pushes

continuous variation in a developmental program beyond a certain threshold.

Test the hypothesis
• "plot" wings in "form space"
• determine whether topological variants lie "in the direction of" continuous

shape selected for, and at the extreme in that direction

Goal. Statistical analysis encompassing topological vein variation, giving

appropriate weight to new singular points in addition to varying shape

• compare phenotypic distance to genotypic distance; needs
• metric specifying distance between topologically distinct wings

To proceed. Statistics with fly wings as data objects statistics with

multiparameter persistence diagrams as data objects
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[Houle, et al.]: selecting for certain continuous wing vein deformations yields
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• much higher rate of topological novelty

Hypothesis. Topological novelty arises when directional selection pushes

continuous variation in a developmental program beyond a certain threshold.

Test the hypothesis
• "plot" wings in "form space"
• determine whether topological variants lie "in the direction of" continuous

shape selected for, and at the extreme in that direction

Goal. Statistical analysis encompassing topological vein variation, giving

appropriate weight to new singular points in addition to varying shape

• compare phenotypic distance to genotypic distance; needs
• metric specifying distance between topologically distinct wings

To proceed. Statistics with fly wings as data objects statistics with

multiparameter persistence diagrams
︸ ︷︷ ︸
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Persistent homology

Topological space X
• Fixed X  homology HiX for each dimension i

• Build X step by step: measure evolving topology

Def. Let X
•

be a filtered space, meaning ∅ = X0 ⊂ X1 ⊂ · · · ⊂ Xm = X .

The persistent homology HiX•
is HiX1 → HiX2 → · · · → HiXm, a sequence of

vector space homomorphisms.

Examples

1. Given a function f : X → R, let Xk = f−1
(
(−∞, tk ]

)
. Good choice of

t0, . . . , tm ∈ R: the values of t across which HiXt changes

2. Any simplicial complex: build it simplex by simplex in some order

History. invented by [Frosini, Landi 1999], [Robins 1999];

[Edelsbrunner, Letscher, Zomorodian 2002]: includes efficient computation;

[Carlsson, Zomorodian 2009]: multiparameter persistence;

[many others]: further theoretical developments, applications
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Example: expanding balls

dim(H0) = 26
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Example: expanding balls
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Example: expanding balls

dim(H0) = 12
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Example: expanding balls

dim(H0) = 6
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Example: expanding balls

dim(H0) = 2
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Example: expanding balls

dim(H0) = 1 dim(H1) = 3
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Example: expanding balls

dim(H0) = 1 dim(H1) = 0
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Example: expanding balls

dim(H0) = 1 dim(H1) = 0
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Persistent homology

Topological space X
• Fixed X  homology HiX for each dimension i

• Build X step by step: measure evolving topology

Def. Let X
•
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2. Any simplicial complex: build it simplex by simplex in some order

History. invented by [Frosini, Landi 1999], [Robins 1999];

[Edelsbrunner, Letscher, Zomorodian 2002]: includes efficient computation;

[Carlsson, Zomorodian 2009]: multiparameter persistence;

[many others]: further theoretical developments, applications
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Persistent homology

Topological space X
• Fixed X  homology HiX for each dimension i

• Build X step by step: measure evolving topology

Def. Let X
•

be a filtered space, meaning ∅ = X0 ⊂ X1 ⊂ · · · ⊂ Xm = X .

The persistent homology HiX•
is HiX1 → HiX2 → · · · → HiXm, a sequence of

vector space homomorphisms.

Examples

1. Given a function f : X → R, let Xk = f−1
(
(−∞, tk ]

)
. Good choice of

t0, . . . , tm ∈ R: the values of t across which HiXt changes

2. Any simplicial complex: build it simplex by simplex in some order

History. invented by [Frosini, Landi 1999], [Robins 1999];

[Edelsbrunner, Letscher, Zomorodian 2002]: includes efficient computation;

[Carlsson, Zomorodian 2009]: multiparameter persistence;

[many others]: further theoretical developments, applications

3’’



Fly wings Biology Persistence Multiple parameters Poset modules Next up

Persistent homology

Topological space X
• Fixed X  homology HiX for each dimension i

• Build X step by step: measure evolving topology

Def. Let X
•

be a filtered space, meaning ∅ = X0 ⊂ X1 ⊂ · · · ⊂ Xm = X .

The persistent homology HiX•
is HiX1 → HiX2 → · · · → HiXm, a sequence of

vector space homomorphisms.

Examples

1. Given a function f : X → R, let Xk = f−1
(
(−∞, tk ]

)
. Good choice of

t0, . . . , tm ∈ R: the values of t across which HiXt changes

2. Any simplicial complex: build it simplex by simplex in some order

History. invented by [Frosini, Landi 1999], [Robins 1999];

[Edelsbrunner, Letscher, Zomorodian 2002]: includes efficient computation;

[Carlsson, Zomorodian 2009]: multiparameter persistence;

[many others]: further theoretical developments, applications

3’’



Fly wings Biology Persistence Multiple parameters Poset modules Next up

Persistent homology

Topological space X
• Fixed X  homology HiX for each dimension i

• Build X step by step: measure evolving topology

Def. Let X
•

be a filtered space, meaning ∅ = X0 ⊂ X1 ⊂ · · · ⊂ Xm = X .

The persistent homology HiX•
is HiX1 → HiX2 → · · · → HiXm, a sequence of

vector space homomorphisms.

Examples

1. Given a function f : X → R, let Xk = f−1
(
(−∞, tk ]

)
. Good choice of

t0, . . . , tm ∈ R: the values of t across which HiXt changes

2. Any simplicial complex: build it simplex by simplex in some order

History. invented by [Frosini, Landi 1999], [Robins 1999];

[Edelsbrunner, Letscher, Zomorodian 2002]: includes efficient computation;

[Carlsson, Zomorodian 2009]: multiparameter persistence;

[many others]: further theoretical developments, applications

3’’



Fly wings Biology Persistence Multiple parameters Poset modules Next up

Multiparameter persistence

Plan. (with Houle, Curry, Thomas, +. . . ) Encode with 2-parameter persistence

• 1st parameter: distance from vertex set
• 2nd parameter: distance from edge set

Sublevel set Wr ,s is near edges but far from vertices

• models intersection homology [Bendich, Harer 2011] at undetermined scale:
• disallow interaction of larger strata with smaller ones
• diminutive features can represent new strata at appropriate scales

Z
2-module:

↑ ↑ ↑

→ Hr−ε,s+δ → Hr,s+δ → Hr+ε,s+δ →

↑ ↑ ↑

→ Hr−ε,s → Hr,s → Hr+ε,s →

↑ ↑ ↑

→ Hr−ε,s−δ → Hr ,s−δ → Hr+ε,s−δ →

↑ ↑ ↑
6
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Fly wings Biology Persistence Multiple parameters Poset modules Next up

Modules over posets

Def. partially ordered set (Q,�): relation � is

• reflexive: q � q
• transitive: p � q � r ⇒ p � r
• antisymmetric: p � q and q � p ⇒ p = q

Filter X by poset Q of subspaces: Xq ⊆ X for q ∈ Q ⇒ persistent homology is a

Def. Q-module: • Q-graded vector space H =
⊕

q∈Q Hq with

• homomorphism Hq → Hq′ whenever q � q′ in Q
Examples

• brain arteries: Q = {0, . . . ,m}
• brain arteries: Q = R

• wing veins: Q = Z
2

• wing veins: Q = R
2

• multifiltration = n real filtrations of any topological space: Q = R
n

• Q = Z
n implies H = Z

n-graded k[x1, . . . , xn]-module: standard CCA!

Z
2-module:

↑ ↑ ↑

→ Hr−ε,s+δ → Hr,s+δ → Hr+ε,s+δ →

↑ ↑ ↑

→ Hr−ε,s → Hr,s → Hr+ε,s →

↑ ↑ ↑

→ Hr−ε,s−δ → Hr ,s−δ → Hr+ε,s−δ →

↑ ↑ ↑
8
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Next up

1. modules, gradings, and topology from statistical problems in biology

2. upsets and downsets: free, flat, and injective modules

3. resolutions of Zn-graded modules over k[x1, . . . , xn]

4. poset encoding: lift homological algebra to modules over poests

• syzygy theorem
• fringe presentation: data structure for persistent homology

5. how to do statistics on sets of peristence modules

• moduli problems
• “non-moduli” conjecture for fly wing peristence modules
• encoding rank functions
• bar codes, QR codes, topological interpretation
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Fly wings Biology Persistence Multiple parameters Poset modules Next up

Fringe presentation

Def [w/A. Thomas]. H has finite encoding π : Q → P if

• P finite poset and
• H ∼= π

∗M =
⊕

q∈Q Hπ(q), the pullback of M along π.

For Q = R
n, encoding is semialgebraic if its fibers are semialgebraic varieties.

Def. Fix a poset Q.

• upset U ⊆ Q if U =
⋃

u∈U Q�u

• downset D ⊆ Q if D =
⋃

d∈D Q�d

For any subset S ⊆ Q, set k[S] =
⊕

s∈S ks.

Def [w/A. Thomas]. A fringe presentation of H is a monomial matrix

U1

...

Uk





D1 · · · Dℓ

ϕ11 · · · ϕ1ℓ

...
. . .

...

ϕk1 · · · ϕkℓ





k[U1]⊕ · · · ⊕ k[Uk ] = F −−−−−−−−−−−−−−−−→ E = k[D1]⊕ · · · ⊕ k[Dℓ]

with image(F → E) ∼= H.

• subordinate to encoding π : Q → P if all Ui and Dj are unions of fibers of π

Compare. [Chachólski, Patriarca, Scolamiero, Vaccarino] “monomial presentation”

10
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Fringe presentation

Examples
• In R

2:

U = and = D

• In R
3:

U =

semialgebraic

or

piecewise linear

= D

[Andrei Okounkov, Limit shapes, real and imagined, Bulletin of the AMS 53 (2016), no. 2, 187–216]
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Fly wings Biology Persistence Multiple parameters Poset modules Next up

Fringe presentation

Def [w/A. Thomas]. H has finite encoding π : Q → P if

• P finite poset and
• H ∼= π

∗M =
⊕

q∈Q Hπ(q), the pullback of M along π.

For Q = R
n, encoding is semialgebraic if its fibers are semialgebraic varieties.

Def. Fix a poset Q.

• upset U ⊆ Q if U =
⋃

u∈U Q�u

• downset D ⊆ Q if D =
⋃

d∈D Q�d

For any subset S ⊆ Q, set k[S] =
⊕

s∈S ks.

Def [w/A. Thomas]. A fringe presentation of H is a monomial matrix

U1

...

Uk





D1 · · · Dℓ

ϕ11 · · · ϕ1ℓ

...
. . .

...

ϕk1 · · · ϕkℓ





k[U1]⊕ · · · ⊕ k[Uk ] = F −−−−−−−−−−−−−−−−→ E = k[D1]⊕ · · · ⊕ k[Dℓ]

with image(F → E) ∼= H.

• subordinate to encoding π : Q → P if all Ui and Dj are unions of fibers of π

Compare. [Chachólski, Patriarca, Scolamiero, Vaccarino] “monomial presentation”
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