On Polyomino Ideals

Sara Saeedi Madani
(Joint with: Jürgen Herzog)

Universität Osnabrück
August 2016

Let $\mathbb{R}_{+}^{2}=\left\{(x, y) \in \mathbb{R}^{2}: x, y \geq 0\right\}$.
We consider $\left(\mathbb{R}_{+}^{2}, \leq\right)$ as a partially ordered set with $(x, y) \leq(z, w)$ if $x \leq z$ and $y \leq w$.

Let $a, b \in \mathbb{N}^{2}$. Then the set $[a, b]=\left\{c \in \mathbb{N}^{2}: a \leq c \leq b\right\}$ is called an interval.

Let $a=(i, j), b=(k, l) \in \mathbb{N}^{2}$ with $i<k$ and $j<l$.
Then the elements a and b are called diagonal corners, and the elements $c=(i, l)$ and $d=(k, j)$ are called anti-diagonal corners of $[a, b]$.

A cell C is an interval of the form $[a, b]$, where $b=a+(1,1)$. The elements of C are called vertices of C. We denote the set of vertices of C by $V(C)$. The intervals $[a, a+(1,0)]$, $[a+(1,0), a+(1,1)],[a+(0,1), a+(1,1)]$ and $[a, a+(0,1)]$ are called edges of C.

Let $a=(i, j), b=(k, l) \in \mathbb{N}^{2}$ with $i<k$ and $j<l$.
Then the elements a and b are called diagonal corners, and the elements $c=(i, l)$ and $d=(k, j)$ are called anti-diagonal corners of $[a, b]$.

A cell C is an interval of the form $[a, b]$, where $b=a+(1,1)$. The elements of C are called vertices of C. We denote the set of vertices of C by $V(C)$. The intervals $[a, a+(1,0)]$, $[a+(1,0), a+(1,1)],[a+(0,1), a+(1,1)]$ and $[a, a+(0,1)]$ are called edges of C.

Let \mathcal{P} be a finite collection of cells of \mathbb{N}^{2}. Then two cells C and D are called connected if there exists a sequence

$$
\mathcal{C}: C=C_{1}, C_{2}, \ldots, C_{t}=D
$$

of cells of \mathcal{P} such that for all $i=1, \ldots, t-1$ the cells C_{i} and C_{i+1} intersect in an edge.

If the cells in \mathcal{C} are pairwise distinct, then \mathcal{C} is called a path between C and D.

Polyominoes

A finite collection of cells \mathcal{P} is called a polyomino if every two cells of \mathcal{P} are connected.

The vertex set of \mathcal{P}, denoted $V(\mathcal{P})$, is defined to be $\bigcup_{C \in \mathcal{P}} V(C)$.

Polyominoes

A finite collection of cells \mathcal{P} is called a polyomino if every two cells of \mathcal{P} are connected.

The vertex set of \mathcal{P}, denoted $V(\mathcal{P})$, is defined to be $\bigcup_{C \in \mathcal{P}} V(C)$.

Polyominoes

Figure: A polyomino

The name polyomino was invented by Solomon W. Golomb in 1953 and it was popularized by Martin Gardner.

Figure: A polyomino

The name polyomino was invented by Solomon W. Golomb in 1953 and it was popularized by Martin Gardner.

Polyomino Ideal

An inner interval / of a polyomino \mathcal{P} is an interval with the property that all cells inside I belong to \mathcal{P}.

Let \mathcal{P} be a polyomino and $S=K\left[x_{a}: a \in V(\mathcal{P})\right]$ be the polynomial ring with the indeterminates x_{a} over the field K. The 2 -minor $x_{a} x_{b}-x_{c} x_{d} \in S$ is called an inner minor of \mathcal{P} if $[a, b]$ is an inner interval of \mathcal{P} with anti-diagonal corners c and d.

An inner interval $/$ of a polyomino \mathcal{P} is an interval with the property that all cells inside I belong to \mathcal{P}.

Let \mathcal{P} be a polyomino and $S=K\left[x_{a}: a \in V(\mathcal{P})\right]$ be the polynomial ring with the indeterminates x_{a} over the field K. The 2 -minor $x_{a} x_{b}-x_{c} x_{d} \in S$ is called an inner minor of \mathcal{P} if $[a, b]$ is an inner interval of \mathcal{P} with anti-diagonal corners c and d.

Associated to \mathcal{P} is the binomial ideal $\mathcal{I}_{\mathcal{P}}$ in S, generated by all inner minors of \mathcal{P}. This ideal is called the polyomino ideal of \mathcal{P}, and the K-algebra $K[\mathcal{P}]=S / \boldsymbol{I}_{\mathcal{P}}$ is called the coordinate ring of \mathcal{P}.

An inner interval $/$ of a polyomino \mathcal{P} is an interval with the property that all cells inside $/$ belong to \mathcal{P}.

Let \mathcal{P} be a polyomino and $S=K\left[x_{a}: a \in V(\mathcal{P})\right]$ be the polynomial ring with the indeterminates x_{a} over the field K. The 2 -minor $x_{a} x_{b}-x_{c} x_{d} \in S$ is called an inner minor of \mathcal{P} if $[a, b]$ is an inner interval of \mathcal{P} with anti-diagonal corners c and d.

Associated to \mathcal{P} is the binomial ideal $\boldsymbol{I}_{\mathcal{P}}$ in S, generated by all inner minors of \mathcal{P}. This ideal is called the polyomino ideal of \mathcal{P}, and the K-algebra $K[\mathcal{P}]=S / \mathscr{I}_{\mathcal{P}}$ is called the coordinate ring of \mathcal{P}.

Polyomino Ideal

- (Qureshi): Studying Gröbner basis for some term orders.
- (Qureshi): Characterization of Gorenstein stack polyominoes.
- (Qureshi): Studying Gröbner basis for some term orders.
- (Qureshi): Characterization of Gorenstein stack polyominoes.
- (Ene, Herzog, Hibi): Characterization of those polyominoes whose ideals have linear relations.
- (Qureshi): Studying Gröbner basis for some term orders.
- (Qureshi): Characterization of Gorenstein stack polyominoes.
- (Ene, Herzog, Hibi): Characterization of those polyominoes whose ideals have linear relations.
- Finding polyominoes whose coordinates ring are domain.
- (Qureshi): Studying Gröbner basis for some term orders.
- (Qureshi): Characterization of Gorenstein stack polyominoes.
- (Ene, Herzog, Hibi): Characterization of those polyominoes whose ideals have linear relations.
- Finding polyominoes whose coordinates ring are domain.

Simple Polyominoes

Let \mathcal{P} be a polyomino and \mathcal{I} a rectangular polyomino such that $\mathcal{P} \subset \mathcal{I}$. Then the polyomino \mathcal{P} is called simple, if each cell C which does not belong to \mathcal{P} satisfies the following condition (*): there exists a path $\mathcal{C}: C=C_{1}, C_{2}, \ldots, C_{t}=D$ with $C_{i} \notin \mathcal{P}$ for all $i=1, \ldots, t$ and such that D is not a cell of \mathcal{I}.

Simple Polyominoes

Figure: A polyomino which is not simple

Simple Polyominoes

Figure: A simple polyomino

Simple Polyominoes

Let \mathcal{P} be a polyomino and let \mathcal{H} be the collection of cells $C \notin \mathcal{P}$ which do not satisfy condition $(*)$. The connected components of \mathcal{H} are called the holes of \mathcal{P}.

Note that \mathcal{P} is simple if and only if it is hole-free.

Simple Polyominoes

Figure: A polyomino which has a hole

Simple Polyominoes

Conjecture (Qureshi, 2012)

Let \mathcal{P} be a simple polyomino. Then $I_{\mathcal{P}}$ is a prime ideal.

Admissible Labeling

For a polyomino \mathcal{P}, a function $\alpha: V(\mathcal{P}) \rightarrow \mathbb{Z}$ is called an admissible labeling of \mathcal{P}, if for all maximal horizontal and vertical edge intervals I of \mathcal{P}, we have

$$
\sum_{a \in I} \alpha(a)=0
$$

Admissible Labeling

Figure: An admissible labeling

Balanced Polyominoes

Let α be an admissible labeling of a polyomino \mathcal{P}. We may view α as a vector $\alpha \in \mathbb{Z}^{n}$, where n is the number of vertices of \mathcal{P}. By using this notation, we associate to α the binomial $f_{\alpha}=\mathbf{x}^{\alpha^{+}}-\mathbf{x}^{\alpha^{-}}$.

Let $J_{\mathcal{P}}$ be the ideal in S which is generated by the binomials f_{α}, where α is an admissible labeling of \mathcal{P}. By definition, it is clear that $\boldsymbol{I}_{\mathcal{P}} \subset J_{\mathcal{P}}$.

Balanced Polyominoes

Let α be an admissible labeling of a polyomino \mathcal{P}. We may view α as a vector $\alpha \in \mathbb{Z}^{n}$, where n is the number of vertices of \mathcal{P}. By using this notation, we associate to α the binomial $f_{\alpha}=\mathbf{x}^{\alpha^{+}}-\mathbf{x}^{\alpha^{-}}$.

Let $J_{\mathcal{P}}$ be the ideal in S which is generated by the binomials f_{α}, where α is an admissible labeling of \mathcal{P}. By definition, it is clear that $\boldsymbol{I}_{\mathcal{P}} \subset J_{\mathcal{P}}$.

A polyomino \mathcal{P} is called balanced if $f_{\alpha} \in \mathcal{I}_{\mathcal{P}}$ for every admissible labeling α of \mathcal{P}.

Balanced Polyominoes

Let α be an admissible labeling of a polyomino \mathcal{P}. We may view α as a vector $\alpha \in \mathbb{Z}^{n}$, where n is the number of vertices of \mathcal{P}. By using this notation, we associate to α the binomial $f_{\alpha}=\mathbf{x}^{\alpha^{+}}-\mathbf{x}^{\alpha^{-}}$.

Let $J_{\mathcal{P}}$ be the ideal in S which is generated by the binomials f_{α}, where α is an admissible labeling of \mathcal{P}. By definition, it is clear that $\boldsymbol{I}_{\mathcal{P}} \subset J_{\mathcal{P}}$.

A polyomino \mathcal{P} is called balanced if $f_{\alpha} \in I_{\mathcal{P}}$ for every admissible labeling α of \mathcal{P}.

Balanced Polyominoes

Theorem (Herzog - Qureshi - Shikama, 2014)

Let \mathcal{P} be a balanced polyomino. Then $K[\mathcal{P}]$ is a normal Cohen-Macaulay domain of dimension $|V(\mathcal{P})|-|\mathcal{P}|$.

(Row or Column) Convex Polyominoes

Figure: A row convex polyomino which is not column convex

Figure: A tree-like polyomino

(Row or Column) Convex and Tree-like Polyominoes

Theorem (Herzog - Qureshi - Shikama, 2014)
 Let \mathcal{P} be a row or column convex, or a tree-like polyomino. Then \mathcal{P} is balanced and simple.

(Row or Column) Convex and Tree-like Polyominoes

Corollary (Herzog - Qureshi - Shikama, 2014)
 Let \mathcal{P} be a row or column convex, or a tree-like polyomino. Then $K[\mathcal{P}]$ is a normal Cohen-Macaulay domain.

Simple $=$ Balanced

Theorem (Herzog, -, 2015)

A polyomino is simple if and only if it is balanced.

Conjecture is proved!

Corollary (Herzog, -, 2015)
 Let \mathcal{P} be a simple polyomino. Then $K[\mathcal{P}]$ is a Cohen-Macaulay normal domain.

Even more!

Theorem (Qureshi - Shibuta - Shikama, 2015)
 Let \mathcal{P} be a simple polyomino. Then $K[\mathcal{P}]$ is a toric edge ring.

What else is prime?

- (Shikama, 2015) Rectangle minus rectangle.
- (Hibi-Qureshi, 2015) Rectangle minus convex.
- Determining polyominoes \mathcal{P} with exactly one hole where $I_{\mathcal{P}}$ is prime.
- Are they all radical?
- Studying the ideal of higher minors.
- Studying some algebraic invariants like regularity.

Thanks for your attention.

