On the containment problem

Tomasz Szemberg

National School on Algebra 2016
Moieciu de Sus, August 17-24, 2016

Definition

Let \mathbb{K} be a field and let $R=\mathbb{K}\left[x_{0}, \ldots, x_{n}\right]$ be the ring of polynomials. For a homogeneous ideal $0 \neq I \subsetneq R$ its m-th symbolic power is

$$
I^{(m)}=\bigcap_{P \in \operatorname{Ass}(I)}\left(I^{m} R_{P} \cap R\right)
$$

Definition

Let \mathbb{K} be a field and let $R=\mathbb{K}\left[x_{0}, \ldots, x_{n}\right]$ be the ring of polynomials. For a homogeneous ideal $0 \neq I \subsetneq R$ its m-th symbolic power is

$$
I^{(m)}=\bigcap_{P \in \operatorname{Ass}(I)}\left(I^{m} R_{P} \cap R\right)
$$

Theorem (Zariski-Nagata)

Let $X \subset \mathbb{P}^{n}(\mathbb{K})$ be a projective variety (in particular reduced). Then $I(X)^{(m)}$ is generated by all forms which vanish along X to order at least m.

Let $Z=\left\{P_{1}, \ldots, P_{s}\right\}$ be a finite set of points in $\mathbb{P}^{n}(\mathbb{K})$. Then

$$
I(Z)=I\left(P_{1}\right) \cap \ldots \cap I\left(P_{s}\right)
$$

and

$$
I(Z)^{(m)}=I\left(P_{1}\right)^{m} \cap \ldots \cap I\left(P_{s}\right)^{m}
$$

for all $m \geq 1$.

Problem

Compare ordinary and symbolic powers of homogeneous ideals.

Problem

Compare ordinary and symbolic powers of homogeneous ideals. More precisely, given I determine all pairs (m, r) such that a) $I^{r} \subset I^{(m)}$;
b) $I^{(m)} \subset I^{r}$.

Problem

Compare ordinary and symbolic powers of homogeneous ideals. More precisely, given I determine all pairs (m, r) such that a) $I^{r} \subset I^{(m)}$;
b) $I^{(m)} \subset I^{r}$.

Proposition

$$
I^{r} \subset I^{(m)} \Leftrightarrow r \geq m .
$$

Problem

Compare ordinary and symbolic powers of homogeneous ideals. More precisely, given I determine all pairs (m, r) such that a) $I^{r} \subset I^{(m)}$;
b) $I^{(m)} \subset I^{r}$.

Proposition

$$
I^{r} \subset I^{(m)} \Leftrightarrow r \geq m .
$$

Theorem (Ein-Lazarsfeld-Smith, Hochster-Huneke)

$$
\text { If } m \geq \operatorname{bight}(I) r, \text { then } I^{(m)} \subset I^{r}
$$

Example

If I is the complete intersection, then $I^{(m)}=I^{m}$ for all $m \geq 1$.

Example

If I is the complete intersection, then $I^{(m)}=I^{m}$ for all $m \geq 1$.

Theorem (A simplified version)

$$
\text { If } m \geq n r, \text { then } I^{(m)} \subset I^{r}
$$

Example

If I is the complete intersection, then $I^{(m)}=I^{m}$ for all $m \geq 1$.

Theorem (A simplified version)

$$
\text { If } m \geq n r, \text { then } I^{(m)} \subset I^{r} .
$$

Question

Can one improve the coefficient n in front of r ?

Example

If I is the complete intersection, then $I^{(m)}=I^{m}$ for all $m \geq 1$.
Theorem (A simplified version)

$$
\text { If } m \geq n r, \text { then } I^{(m)} \subset I^{r}
$$

Question

Can one improve the coefficient n in front of r ?

Answer

No (Bocci, Harbourne).

Problem (Bocci, Harbourne, Huneke)

Does the containment

$$
I^{(m)} \subset I^{r}
$$

hold for all r and $m \geq n r-(n-1)$?

Problem (Bocci, Harbourne, Huneke)

Does the containment

$$
I^{(m)} \subset I^{r}
$$

hold for all r and $m \geq n r-(n-1)$?
Problem (Baby case, Huneke 2000)
Let I be a saturated ideal of points in $\mathbb{P}^{2}(\mathbb{K})$. Is there the containment

$$
I^{(3)} \subset I^{2} ?
$$

A quest for improvements 2

Problem (Bocci, Harbourne, Huneke)

Does the containment

$$
I^{(m)} \subset I^{r}
$$

hold for all r and $m \geq n r-(n-1)$?

Problem (Baby case, Huneke 2000)

Let I be a saturated ideal of points in $\mathbb{P}^{2}(\mathbb{K})$. Is there the containment

$$
I^{(3)} \subset I^{2} ?
$$

Problem (Harbourne, Huneke)
Let $M=<x_{0}, \ldots, x_{n}>$. Does the containment

$$
I^{(m)} \subset M^{r(n-1)} I^{r}
$$

hold for $m \geq n r$?

Theorem

The containment

$$
I^{(n r-(n-1))} \subset I^{r}
$$

holds for
a) arbitrary ideals in characteristic 2;

Theorem

The containment

$$
I^{(n r-(n-1))} \subset I^{r}
$$

holds for
a) arbitrary ideals in characteristic 2 ;
b) monomial ideals in arbitrary characteristic;

Theorem

The containment

$$
I^{(n r-(n-1))} \subset I^{r}
$$

holds for
a) arbitrary ideals in characteristic 2;
b) monomial ideals in arbitrary characteristic;
c) ideals of d-stars;

Theorem

The containment

$$
I^{(n r-(n-1))} \subset I^{r}
$$

holds for
a) arbitrary ideals in characteristic 2;
b) monomial ideals in arbitrary characteristic;
c) ideals of d-stars;
d) ideals of general points in \mathbb{P}^{2} and \mathbb{P}^{3}.

Theorem (Seceleanu)

Let $I \subset R$ be a homogeneous ideal. There is an associated exact sequence

$$
0 \rightarrow I^{r} / I^{m} \rightarrow R / I^{m} \xrightarrow{\pi} R / I^{r} \rightarrow 0 .
$$

The following conditions are equivalent:
i) there is the containment $I^{(m)} \subset I^{r}$,
ii) the induced $\operatorname{map} H_{M}^{0}(\pi): H_{M}^{0}\left(R / I^{m}\right) \rightarrow H_{M}^{0}\left(R / I^{r}\right)$ is the zero map.

Theorem (Dumnicki, Sz., Tutaj-Gasińska)

The containment

$$
I^{(3)} \subset I^{2}
$$

fails for the ideal I of points

$$
\begin{array}{lll}
P_{1}=(1: 0: 0), & P_{2}=(0: 1: 0), & P_{3}=(0: 0: 1), \\
P_{4}=(1: 1: 1), & P_{5}=\left(1: \varepsilon: \varepsilon^{2}\right), & P_{6}=\left(1: \varepsilon^{2}: \varepsilon\right), \\
P_{7}=(\varepsilon: 1: 1), & P_{8}=(1: \varepsilon: 1), & P_{9}=(1: 1: \varepsilon), \\
P_{10}=\left(\varepsilon^{2}: 1: 1\right), & P_{11}=\left(1: \varepsilon^{2}: 1\right), & P_{12}=\left(1: 1: \varepsilon^{2}\right)
\end{array}
$$

in $\mathbb{P}^{2}(\mathbb{C})$.

Theorem (Dumnicki, Sz., Tutaj-Gasińska)

The containment

$$
I^{(3)} \subset I^{2}
$$

fails for the ideal I of points

$$
\begin{array}{lll}
P_{1}=(1: 0: 0), & P_{2}=(0: 1: 0), & P_{3}=(0: 0: 1), \\
P_{4}=(1: 1: 1), & P_{5}=\left(1: \varepsilon: \varepsilon^{2}\right), & P_{6}=\left(1: \varepsilon^{2}: \varepsilon\right), \\
P_{7}=(\varepsilon: 1: 1), & P_{8}=(1: \varepsilon: 1), & P_{9}=(1: 1: \varepsilon), \\
P_{10}=\left(\varepsilon^{2}: 1: 1\right), & P_{11}=\left(1: \varepsilon^{2}: 1\right), & P_{12}=\left(1: 1: \varepsilon^{2}\right)
\end{array}
$$

in $\mathbb{P}^{2}(\mathbb{C})$.

Remark

These are all intersection points of the dual Hesse configuration of lines.

More counterexamples in characteristic 0

Theorem

The containment

$$
I^{(3)} \subset I^{2}
$$

fails for all intersection points of configurations:

- Fermat (over \mathbb{C}) (DSzTG, Seceleanu);

More counterexamples in characteristic 0

Theorem

The containment

$$
I^{(3)} \subset I^{2}
$$

fails for all intersection points of configurations:

- Fermat (over $\mathbb{C})(D S z T G$, Seceleanu);
- Klein (over \mathbb{C}) (Seceleanu);

More counterexamples in characteristic 0

Theorem

The containment

$$
I^{(3)} \subset I^{2}
$$

fails for all intersection points of configurations:

- Fermat (over $\mathbb{C})(D S z T G$, Seceleanu);
- Klein (over \mathbb{C}) (Seceleanu);
- Wiman (over \mathbb{C}) (Macaulay, Singular);

Theorem

The containment

$$
I^{(3)} \subset I^{2}
$$

fails for all intersection points of configurations:

- Fermat (over $\mathbb{C})(D S z T G$, Seceleanu);
- Klein (over \mathbb{C}) (Seceleanu);
- Wiman (over \mathbb{C}) (Macaulay, Singular);
- Boröczky on 12 lines (over \mathbb{R}) (Cracow group);

More counterexamples in characteristic 0

Theorem

The containment

$$
I^{(3)} \subset I^{2}
$$

fails for all intersection points of configurations:

- Fermat (over $\mathbb{C})(D S z T G$, Seceleanu);
- Klein (over \mathbb{C}) (Seceleanu);
- Wiman (over \mathbb{C}) (Macaulay, Singular);
- Boröczky on 12 lines (over \mathbb{R}) (Cracow group);
- Boröczky on more lines (over \mathbb{R}) (Macaulay, Singular);

More counterexamples in characteristic 0

Theorem

The containment

$$
I^{(3)} \subset I^{2}
$$

fails for all intersection points of configurations:

- Fermat (over $\mathbb{C})(D S z T G$, Seceleanu);
- Klein (over \mathbb{C}) (Seceleanu);
- Wiman (over \mathbb{C}) (Macaulay, Singular);
- Boröczky on 12 lines (over \mathbb{R}) (Cracow group);
- Boröczky on more lines (over \mathbb{R}) (Macaulay, Singular);
- Boröczky-type on 12 lines (over \mathbb{Q}) (Lampa-Baczyńska, Szpond);

More counterexamples in characteristic 0

Theorem

The containment

$$
I^{(3)} \subset I^{2}
$$

fails for all intersection points of configurations:

- Fermat (over $\mathbb{C})(D S z T G$, Seceleanu);
- Klein (over \mathbb{C}) (Seceleanu);
- Wiman (over \mathbb{C}) (Macaulay, Singular);
- Boröczky on 12 lines (over \mathbb{R}) (Cracow group);
- Boröczky on more lines (over \mathbb{R}) (Macaulay, Singular);
- Boröczky-type on 12 lines (over \mathbb{Q}) (Lampa-Baczyńska, Szpond);

Remark

No counterexample is known for higher powers, e.g. $I^{(5)} \subset I^{3}$.

More counterexamples in characteristic 0

Theorem

The containment

$$
I^{(3)} \subset I^{2}
$$

fails for all intersection points of configurations:

- Fermat (over $\mathbb{C})(D S z T G$, Seceleanu);
- Klein (over \mathbb{C}) (Seceleanu);
- Wiman (over \mathbb{C}) (Macaulay, Singular);
- Boröczky on 12 lines (over \mathbb{R}) (Cracow group);
- Boröczky on more lines (over \mathbb{R}) (Macaulay, Singular);
- Boröczky-type on 12 lines (over \mathbb{Q}) (Lampa-Baczyńska, Szpond);

Remark

No counterexample is known for higher powers, e.g. $I^{(5)} \subset I^{3}$. No counterexamples in \mathbb{P}^{n} for $n \geq 3$

Tomasz Szemberg
On the containment problem

Menagerie of counterexamples in finite characteristic, Harbourne and Seceleanu

Example

Let \mathbb{K} be a field of odd characteristic p and let \mathbb{L} be its subfield of order p. Let $N=\frac{p+1}{2}$ and let Z be the set of all but one \mathbb{L}-points in $\mathbb{P}^{N}(\mathbb{K})$. Then for the ideal $I=I(Z)$ there is

$$
I^{\left(\frac{p+3}{2}\right)} \nsubseteq I^{2} .
$$

Menagerie of counterexamples in finite characteristic, Harbourne and Seceleanu

Example

Let \mathbb{K} be a field of odd characteristic p and let \mathbb{L} be its subfield of order p. Let $N=\frac{p+1}{2}$ and let Z be the set of all but one \mathbb{L}-points in $\mathbb{P}^{N}(\mathbb{K})$. Then for the ideal $I=I(Z)$ there is

$$
I^{\left(\frac{p+3}{2}\right)} \nsubseteq I^{2} .
$$

Example

Let the numbers p and N be so that $p \equiv 1(\bmod N)$ and $p>(N-1)^{2}$. Let Z be the set of all but one \mathbb{L}-points in $\mathbb{P}^{N}(\mathbb{K})$. Then for $r=\frac{p-1}{N}+1$ there is

$$
I^{(p)} \nsubseteq I^{r}
$$

There are modifications of the original problems in the papers by

- Bocci, Cooper and Harbourne: Containment results for ideals of various configurations of points in \mathbb{P}^{n};

There are modifications of the original problems in the papers by

- Bocci, Cooper and Harbourne: Containment results for ideals of various configurations of points in \mathbb{P}^{n};
- Cooper, Embree, Ha and Hoefel: Symbolic powers of monomial ideals.

Definition

For a graded ideal I its initial degree $\alpha(I)$ is the least number t such that $I_{t} \neq 0$.
The Waldschmidt constant of I is the real number

$$
\widehat{\alpha}(I)=\inf _{m \geq 1} \frac{\alpha\left(I^{(m)}\right)}{m}
$$

Definition

For a graded ideal I its initial degree $\alpha(I)$ is the least number t such that $I_{t} \neq 0$.
The Waldschmidt constant of I is the real number

$$
\widehat{\alpha}(I)=\inf _{m \geq 1} \frac{\alpha\left(I^{(m)}\right)}{m}
$$

Conjecture (Chudnovsky)

Let I be a saturated ideal of points in $\mathbb{P}(\mathbb{K})$. Then

$$
\widehat{\alpha}(I) \geq \frac{\alpha(I)+n-1}{n} .
$$

Definition

For a graded ideal I its initial degree $\alpha(I)$ is the least number t such that $I_{t} \neq 0$.

Definition

For a graded ideal I its initial degree $\alpha(I)$ is the least number t such that $I_{t} \neq 0$.

Conjecture (Nagata)
Let I be a saturated ideal of $s \geq 10$ very general points in $\mathbb{P}(\mathbb{C})$. Then

$$
\alpha\left(I^{(m)}\right)>m \sqrt{s} .
$$

Conjecture (Bounded Negativity Conjecture)

Let S be a smooth complex surface. Then there is a number b such that

$$
C^{2} \geq b
$$

for any reduced curve $C \subset S$.

Conjecture (Bounded Negativity Conjecture)

Let S be a smooth complex surface. Then there is a number b such that

$$
C^{2} \geq b
$$

for any reduced curve $C \subset S$.

Remark

This conjecture is not known even on blow ups of $\mathbb{P}^{2}(\mathbb{C})$ at $s \geq 10$ points.

Conjecture (Bounded Negativity Conjecture)

Let S be a smooth complex surface. Then there is a number b such that

$$
C^{2} \geq b
$$

for any reduced curve $C \subset S$.

Remark

This conjecture is not known even on blow ups of $\mathbb{P}^{2}(\mathbb{C})$ at $s \geq 10$ points.

Remark

Negativity on blow ups of $\mathbb{P}^{2}(\mathbb{C})$ gets worst (in terms of Harbourne constants) for intersection points of configurations of lines with no simple intersection points.

