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The set up

Definition

Let K be a field and let R = K[x0, . . . , xn] be the ring of
polynomials. For a homogeneous ideal 0 6= I ( R its m-th
symbolic power is

I (m) =
⋂

P∈Ass(I )

(ImRP ∩ R) .

Theorem (Zariski-Nagata)

Let X ⊂ Pn(K) be a projective variety (in particular reduced).
Then I (X )(m) is generated by all forms which vanish along X to
order at least m.
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Symbolic powers of ideals of points

Let Z = {P1, . . . ,Ps} be a finite set of points in Pn(K). Then

I (Z ) = I (P1) ∩ . . . ∩ I (Ps)

and
I (Z )(m) = I (P1)m ∩ . . . ∩ I (Ps)m

for all m ≥ 1.
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The containment problem

Problem

Compare ordinary and symbolic powers of homogeneous ideals.

More precisely, given I determine all pairs (m, r) such that
a) I r ⊂ I (m);
b) I (m) ⊂ I r .

Proposition

I r ⊂ I (m) ⇔ r ≥ m.

Theorem (Ein-Lazarsfeld-Smith, Hochster-Huneke)

If m ≥ bight(I )r , then I (m) ⊂ I r .
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A quest for improvements

Example

If I is the complete intersection, then I (m) = Im for all m ≥ 1.

Theorem (A simplified version)

If m ≥ nr , then I (m) ⊂ I r .

Question

Can one improve the coefficient n in front of r?

Answer

No (Bocci, Harbourne).
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A quest for improvements 2

Problem (Bocci, Harbourne, Huneke)

Does the containment
I (m) ⊂ I r

hold for all r and m ≥ nr − (n − 1)?

Problem (Baby case, Huneke 2000)

Let I be a saturated ideal of points in P2(K). Is there the
containment

I (3) ⊂ I 2 ?

Problem (Harbourne, Huneke)

Let M =< x0, . . . , xn >. Does the containment

I (m) ⊂ M r(n−1)I r

hold for m ≥ nr?
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The evidence for the Bocci-Harbourne-Huneke Problem

Theorem

The containment
I (nr−(n−1)) ⊂ I r

holds for

a) arbitrary ideals in characteristic 2;

b) monomial ideals in arbitrary characteristic;

c) ideals of d-stars;

d) ideals of general points in P2 and P3.
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Seceleanu’s Criterion

Theorem (Seceleanu)

Let I ⊂ R be a homogeneous ideal. There is an associated exact
sequence

0→ I r/Im → R/Im
π→ R/I r → 0.

The following conditions are equivalent:

i) there is the containment I (m) ⊂ I r ,

ii) the induced map H0
M(π) : H0

M(R/Im)→ H0
M(R/I r ) is the zero

map.

Tomasz Szemberg On the containment problem



The first counterexample

Theorem (Dumnicki, Sz., Tutaj-Gasińska)

The containment
I (3) ⊂ I 2

fails for the ideal I of points

P1 = (1 : 0 : 0), P2 = (0 : 1 : 0), P3 = (0 : 0 : 1),
P4 = (1 : 1 : 1), P5 = (1 : ε : ε2), P6 = (1 : ε2 : ε),
P7 = (ε : 1 : 1), P8 = (1 : ε : 1), P9 = (1 : 1 : ε),
P10 = (ε2 : 1 : 1), P11 = (1 : ε2 : 1), P12 = (1 : 1 : ε2).

in P2(C).

Remark

These are all intersection points of the dual Hesse configuration of
lines.
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More counterexamples in characteristic 0

Theorem

The containment
I (3) ⊂ I 2

fails for all intersection points of configurations:

Fermat (over C) (DSzTG, Seceleanu);

Klein (over C) (Seceleanu);

Wiman (over C) (Macaulay, Singular);

Boröczky on 12 lines (over R) (Cracow group);

Boröczky on more lines (over R) (Macaulay, Singular);

Boröczky-type on 12 lines (over Q) (Lampa-Baczyńska,
Szpond);

Remark

No counterexample is known for higher powers, e.g. I (5) ⊂ I 3.

No counterexamples in Pn for n ≥ 3
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Szpond);

Remark

No counterexample is known for higher powers, e.g. I (5) ⊂ I 3.

No counterexamples in Pn for n ≥ 3

Tomasz Szemberg On the containment problem



More counterexamples in characteristic 0

Theorem

The containment
I (3) ⊂ I 2

fails for all intersection points of configurations:

Fermat (over C) (DSzTG, Seceleanu);

Klein (over C) (Seceleanu);

Wiman (over C) (Macaulay, Singular);
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Boröczky on more lines (over R) (Macaulay, Singular);
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Szpond);

Remark

No counterexample is known for higher powers, e.g. I (5) ⊂ I 3.

No counterexamples in Pn for n ≥ 3

Tomasz Szemberg On the containment problem



More counterexamples in characteristic 0

Theorem

The containment
I (3) ⊂ I 2

fails for all intersection points of configurations:

Fermat (over C) (DSzTG, Seceleanu);

Klein (over C) (Seceleanu);

Wiman (over C) (Macaulay, Singular);
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Szpond);

Remark

No counterexample is known for higher powers, e.g. I (5) ⊂ I 3.
No counterexamples in Pn for n ≥ 3

Tomasz Szemberg On the containment problem



Boröczky configuration of 12 lines
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Menagerie of counterexamples in finite characteristic, Harbourne and
Seceleanu

Example

Let K be a field of odd characteristic p and let L be its subfield of
order p. Let N = p+1

2 and let Z be the set of all but one L-points
in PN(K). Then for the ideal I = I (Z ) there is

I (
p+3
2

) * I 2.

Example

Let the numbers p and N be so that p ≡ 1 (modN) and
p > (N − 1)2. Let Z be the set of all but one L-points in PN(K).
Then for r = p−1

N + 1 there is

I (p) * I r .
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Modified Conjectures

There are modifications of the original problems in the papers by

Bocci, Cooper and Harbourne: Containment results for ideals
of various configurations of points in Pn;

Cooper, Embree, Ha and Hoefel: Symbolic powers of
monomial ideals.

Tomasz Szemberg On the containment problem



Modified Conjectures

There are modifications of the original problems in the papers by

Bocci, Cooper and Harbourne: Containment results for ideals
of various configurations of points in Pn;

Cooper, Embree, Ha and Hoefel: Symbolic powers of
monomial ideals.

Tomasz Szemberg On the containment problem



Relations to external problems: Chudnovsky Conjecture

Definition

For a graded ideal I its initial degree α(I ) is the least number t
such that It 6= 0.
The Waldschmidt constant of I is the real number

α̂(I ) = inf
m≥1

α(I (m))

m
.

Conjecture (Chudnovsky)

Let I be a saturated ideal of points in P(K). Then

α̂(I ) ≥ α(I ) + n − 1

n
.
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Relations to external problems: Nagata Conjecture

Definition

For a graded ideal I its initial degree α(I ) is the least number t
such that It 6= 0.

Conjecture (Nagata)

Let I be a saturated ideal of s ≥ 10 very general points in P(C).
Then

α(I (m)) > m
√
s.

Tomasz Szemberg On the containment problem



Relations to external problems: Nagata Conjecture

Definition

For a graded ideal I its initial degree α(I ) is the least number t
such that It 6= 0.

Conjecture (Nagata)

Let I be a saturated ideal of s ≥ 10 very general points in P(C).
Then

α(I (m)) > m
√
s.

Tomasz Szemberg On the containment problem



Relations to external problems: Bounded Negativity Conjecture

Conjecture (Bounded Negativity Conjecture)

Let S be a smooth complex surface. Then there is a number b
such that

C 2 ≥ b

for any reduced curve C ⊂ S .

Remark

This conjecture is not known even on blow ups of P2(C) at s ≥ 10
points.

Remark

Negativity on blow ups of P2(C) gets worst (in terms of Harbourne
constants) for intersection points of configurations of lines with no
simple intersection points.
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Last but not least
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