Toric ideals

Apostolos Thoma

Department of Mathematics
University of Ioannina

EMS Summer School on Multigraded Algebra and Applications Moieciu, Romania

Toric ideals

Let $A=\left\{\mathrm{a}_{1}, \ldots, \mathrm{a}_{n}\right\} \subseteq \mathbb{Z}^{m}$ be a vector configuration in \mathbb{Q}^{m} and $\mathbb{N} A:=\left\{I_{1} \mathrm{a}_{1}+\cdots+I_{n} \mathrm{a}_{n} \mid I_{i} \in \mathbb{N}_{0}\right\}$ the corresponding affine semigroup. Let $A=\left[\mathrm{a}_{1} \ldots \mathrm{a}_{n}\right] \in \mathbb{Z}^{m \times n}$ be an integer matrix with columns a_{j}. For a vector $u \in \operatorname{Ker}_{\mathbb{Z}}(A)$ we let u^{+}, u^{-}be the unique vectors in \mathbb{N}^{n} with disjoint support such that $u=u^{+}-u^{-}$.

Definition

The toric ideal I_{A} of A is the ideal in $K\left[x_{1}, \cdots, x_{n}\right]$ generated by all binomials of the form $x^{u^{+}}-x^{u^{-}}$where $u \in \operatorname{Ker}_{\mathbb{Z}}(A)$.

A toric ideal is a binomial ideal.

Toric ideals

Example

Let

$$
A=\left(\begin{array}{llllll}
2 & 1 & 2 & 1 & 0 & 0 \\
1 & 2 & 0 & 0 & 2 & 1 \\
0 & 0 & 1 & 2 & 1 & 2
\end{array}\right) .
$$

Then $\left(\begin{array}{c}5 \\ -4 \\ -3 \\ 0 \\ 1 \\ 1\end{array}\right)$ belongs to the $\operatorname{Ker}_{\mathbb{Z}}(\boldsymbol{A})$ since

$$
A=\left(\begin{array}{cccccc}
2 & 1 & 2 & 1 & 0 & 0 \\
1 & 2 & 0 & 0 & 2 & 1 \\
0 & 0 & 1 & 2 & 1 & 2
\end{array}\right)\left(\begin{array}{c}
5 \\
-4 \\
-3 \\
0 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Toric ideals

Example

For the vector $u=\left(\begin{array}{c}5 \\ -4 \\ -3 \\ 0 \\ 1 \\ 1\end{array}\right)$ we have $u^{+}=\left(\begin{array}{l}5 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1\end{array}\right)$ and $u^{-}=\left(\begin{array}{l}0 \\ 4 \\ 3 \\ 0 \\ 0 \\ 0\end{array}\right)$.
Therefore the binomial $x^{\mathrm{u}^{+}}-x^{\mathrm{u}^{-}}=x_{1}^{5} x_{5} x_{6}-x_{2}^{4} x_{3}^{3} \in I_{A}$.

Toric ideals

Let $A=\left\{\mathrm{a}_{1}, \ldots, \mathrm{a}_{n}\right\} \subset \mathbb{Z}^{m}$ be a vector configuration in \mathbb{Q}^{m}. Let K be any field. We grade the polynomial ring $K\left[x_{1}, \ldots, x_{m}\right]$ by setting $\operatorname{deg}_{A}\left(x_{i}\right)=\mathrm{a}_{i}$ for $i=1, \ldots, m$. The A-degree of the monomial $\mathrm{x}^{\mathrm{u}}:=x_{1}^{u_{1}} \cdots x_{m}^{u_{m}}$ is defined to be

$$
\operatorname{deg}_{A}\left(\mathrm{x}^{\mathrm{u}}\right):=u_{1} \mathrm{a}_{1}+\cdots+u_{m} \mathrm{a}_{m} \in \mathbb{N} A
$$

where $\mathrm{u}=\left(u_{1}, \ldots, u_{m}\right) \in \mathbb{N}^{m}$.

Definition

The toric ideal I_{A} associated to A is the ideal generated by all the binomials $\mathrm{x}^{\mathrm{u}}-\mathrm{x}^{\mathrm{v}}$ such that $\operatorname{deg}_{A}\left(\mathrm{x}^{\mathrm{u}}\right)=\operatorname{deg}_{A}\left(\mathrm{x}^{\mathrm{v}}\right)$.

For such binomials, we define $\operatorname{deg}_{A}\left(\mathrm{x}^{\mathrm{u}}-\mathrm{x}^{\mathrm{v}}\right):=\operatorname{deg}_{A}\left(\mathrm{x}^{\mathrm{u}}\right)$.

Toric ideals

Example

The A-degree of the binomial $x_{1} x_{6}-x_{2} x_{4}$ is

$$
\operatorname{deg}_{A}\left(x_{1} x_{6}\right)=\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right)+\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right)+\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right)=\operatorname{deg}_{A}\left(x_{2} x_{4}\right)
$$

I_{A} is minimally generated by:
$\left\{x_{1} x_{6}-x_{2} x_{4}, x_{1} x_{6}-x_{3} x_{5}, x_{4}^{2} x_{5}-x_{3} x_{6}^{2}, x_{2} x_{3}^{2}-x_{1}^{2} x_{4}, x_{1} x_{5}^{2}-x_{2}^{2} x_{6}\right.$, $\left.x_{1} x_{4}^{2}-x_{3}^{2} x_{6}, x_{2}^{2} x_{3}-x_{1}^{2} x_{5}, x_{1} x_{4} x_{5}-x_{2} x_{3} x_{6}, x_{4} x_{5}^{2}-x_{2} x_{6}^{2}\right\}$.
The A-degrees of the binomials are accordingly

$$
\begin{gathered}
\left(\begin{array}{l}
2 \\
2 \\
2
\end{array}\right),\left(\begin{array}{l}
2 \\
2 \\
2
\end{array}\right),\left(\begin{array}{l}
4 \\
4 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
4 \\
4
\end{array}\right),\left(\begin{array}{l}
4 \\
1 \\
4
\end{array}\right), \\
\left(\begin{array}{l}
2 \\
5 \\
2
\end{array}\right),\left(\begin{array}{l}
2 \\
2 \\
5
\end{array}\right),\left(\begin{array}{l}
5 \\
2 \\
2
\end{array}\right),\left(\begin{array}{l}
3 \\
3 \\
3
\end{array}\right) .
\end{gathered}
$$

Toric varieties

Toric ideals are the defining ideals of toric varieties.

$$
V\left(I_{A}\right)=\left\{P \in K^{n} \mid f(P)=0 \text { for every } f \in I_{A}\right\}
$$

It is the Zariski closure of the set of points

$$
\left(t^{a_{1}}, t^{a_{2}}, \cdots, t^{a_{n}}\right)
$$

where $t \in(K-\{0\})^{m}$ and a_{1}, \cdots, a_{n} are the columns of the matrix A.

Example

If A is a row matrix, $\left[m_{1}, m_{2}, \cdots, m_{n}\right]$, then the toric variety is a monomial curve in K^{n} : the set of all points in the form $\left(t^{m_{1}}, t^{m_{2}}, \cdots, t^{m_{n}}\right)$ where $t \in K$.

Toric varieties

Let

$$
A=\left(\begin{array}{llllll}
2 & 1 & 2 & 1 & 0 & 0 \\
1 & 2 & 0 & 0 & 2 & 1 \\
0 & 0 & 1 & 2 & 1 & 2
\end{array}\right)
$$

Then the toric variety $V\left(I_{A}\right)$ is the Zariski closure of the set of points

$$
\left(t_{1}^{2} t_{2}, t_{1} t_{2}^{2}, t_{1}^{2} t_{3}, t_{1} t_{3}^{2}, t_{2}^{2} t_{3}, t_{2} t_{3}^{2}\right)
$$

where $t=\left(t_{1}, t_{2}, t_{3}\right) \in(K-\{0\})^{3}$.

Graphs

A simple graph G consists of a set of vertices $V(G)=\left\{v_{1}, \ldots, v_{m}\right\}$ and a set of edges $E(G)=\left\{e_{1}, \ldots, e_{n}\right\}$, where an edge $e \in E(G)$ is an unordered pair of vertices, $\left\{v_{i}, v_{j}\right\}$. Let A_{G} be the vertex-edge incident matrix of the graph G. This is am $m \times n$ matrix with $0 / 1$ entries. The rows are indexed by the vertices and the columns by the edges. The element in the ij position of the matrix A_{G} is 1 if the vertex v_{i} belongs to the edge e_{j}, otherwise is zero.

Toric ideals of Graphs

Example

The vertex-edge incidence matrix of G.

$$
A_{G}=\left(\begin{array}{llllllll}
1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1
\end{array}\right) .
$$

Toric ideals of graphs

With I_{G} we denote the toric ideal $I_{A_{G}}$ in $\mathbb{K}\left[e_{1}, \ldots, e_{n}\right]$, where A_{G} is the vertex-edge incidence matrix of G.

Let a_{e} be the column of A_{G} which corresponds to the edge e. Then the $\operatorname{deg}_{A}(e)=a_{e}$, which is an m-column that has all the elements zero except two 1.
But one can associate with an edge $e=\left\{v_{s}, v_{t}\right\} \in E(G)$ the element $v_{s}+v_{t}$ in the free abelian group \mathbb{Z}^{n} with basis the set of vertices of G and may think that $\operatorname{deg}_{A}(e)=v_{s}+v_{t}$.

Graphs

Definition

- A walk connecting $v_{i_{1}} \in V(G)$ and $v_{i_{q+1}} \in V(G)$ is a finite sequence of the form

$$
w=\left(\left\{v_{i_{1}}, v_{i_{2}}\right\},\left\{v_{i_{2}}, v_{i_{3}}\right\}, \ldots,\left\{v_{i_{q}}, v_{i_{q+1}}\right\}\right)
$$

with each $e_{i j}=\left\{v_{i j}, v_{i_{i+1}}\right\} \in E(G)$.

- Length of the walk w is called the number q of edges of the walk.
- An even walk is a walk of even length.
- An odd walk is a walk of odd length.

Graphs

Definition

A walk $w=\left(\left\{v_{i_{1}}, v_{i_{2}}\right\},\left\{v_{i_{2}}, v_{i_{3}}\right\}, \ldots,\left\{v_{i_{q}}, v_{i_{q+1}}\right\}\right)$ is called closed if $v_{i_{q+1}}=v_{i_{1}}$.
A cycle is a closed walk

$$
\left(\left\{v_{i_{1}}, v_{i_{2}}\right\},\left\{v_{i_{2}}, v_{i_{3}}\right\}, \ldots,\left\{v_{i_{q}}, v_{i_{1}}\right\}\right)
$$

with $v_{i_{k}} \neq v_{i j}$, for every $1 \leq k<j \leq q$.
Note that, although the graph G has no multiple edges, the same edge e may appear more than once in a walk. In this case e is called multiple edge of the walk w.

Toric ideals of Graphs

Example

- $\left(e_{1}, e_{2}, e_{3}\right)$ is closed odd walk, actualy is a cycle.
- $\left(e_{1},, e_{2}, e_{3}, e_{1}, e_{2}, e_{3}\right)$ is a closed even walk. All of the edges are double edges of the walk.
- $\left(e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}, e_{8}, e_{5}, e_{4}\right)$ is a closed even walk. The edges e_{4}, e_{5} are double edges of the walk.

Toric ideals of Graphs

Given an even closed walk

$$
w=\left(e_{i_{1}}, e_{i_{2}}, \ldots, e_{i_{2 q}}\right)=\left(\left\{v_{i_{1}}, v_{i_{2}}\right\},\left\{v_{i_{2}}, v_{i_{3}}\right\}, \ldots,\left\{v_{i_{q}}, v_{i_{1}}\right\}\right)
$$

of the graph G we denote by

$$
E^{+}(w)=\prod_{k=1}^{q} e_{i_{2 k-1}}, E^{-}(w)=\prod_{k=1}^{q} e_{i_{2 k}}
$$

and by B_{w} the binomial

$$
B_{w}=\prod_{k=1}^{q} e_{i_{2 k-1}}-\prod_{k=1}^{q} e_{i_{2 k}} .
$$

Note that

$$
\begin{aligned}
& \operatorname{deg}_{A}\left(E^{+}(w)\right)=\operatorname{deg}_{A}\left(\prod_{k=1}^{q} e_{i_{2 k-1}}\right)=\left(v_{i_{1}}+v_{i_{2}}\right)+\left(v_{i_{3}}+v_{i_{4}}\right)+\cdots+\left(v_{i_{q-1}}+v_{i_{q}}\right)= \\
& =\left(v_{i_{2}}+v_{i_{3}}\right)+\left(v_{i_{4}}+v_{i_{5}}\right)+\cdots+\left(v_{q}+v_{i_{1}}\right)=\operatorname{deg}_{A}\left(\prod_{k=1}^{q} e_{i_{2 k}}\right)=\operatorname{deg}_{A}\left(E^{-}(w)\right)
\end{aligned}
$$

Therefore B_{w} belongs to the toric ideal I_{G}.

Toric ideals of graphs

Example

Let G be the following graph with 4 vertices and 4 edges.

Then

$$
A_{G}=\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right)
$$

For the even closed walk $w=\left(\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}, \boldsymbol{e}_{4}\right)$ we have $E^{+}(\boldsymbol{w})=\boldsymbol{e}_{1} \boldsymbol{e}_{3}$, $E^{-}(w)=e_{2} e_{4}$ and $B_{w}=e_{1} e_{3}-e_{2} e_{4}$. In fact the toric ideal associated with A_{G} is $I_{G}=\left\langle e_{1} e_{3}-e_{2} e_{4}\right\rangle$.

Toric ideals of Graphs

Example

For the even closed walk $w=\left(e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}\right)$ we have that $E^{+}(w)=e_{1} e_{3} e_{5}$ and $E^{-}(w)=e_{2} e_{4} e_{6}$ therefore

$$
B_{w}=e_{1} e_{3} e_{5}-e_{2} e_{4} e_{6} .
$$

Note that $\operatorname{deg}_{G}\left(e_{1} e_{3} e_{5}\right)=\operatorname{deg}_{G}\left(e_{2} e_{4} e_{6}\right)=v_{1}+v_{2}+v_{3}+v_{4}+v_{5}+v_{6}$.

Toric ideals of Graphs

Example

For the even closed walk $w=\left(\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}, \boldsymbol{e}_{4}, \boldsymbol{e}_{5}, \boldsymbol{e}_{6}, \boldsymbol{e}_{7}, \boldsymbol{e}_{8}, \boldsymbol{e}_{5}, \boldsymbol{e}_{4}\right)$ we have that $E^{+}(w)=e_{1} e_{3} e_{5} e_{7} e_{5}$ and $E^{-}(w)=e_{2} e_{4} e_{6} e_{8} e_{4}$ therefore

$$
B_{w}=e_{1} e_{3} e_{5}^{2} e_{7}-e_{2} e_{4}^{2} e_{6} e_{8}
$$

Note that $\operatorname{deg}_{G}\left(e_{1} e_{3} e_{5}^{2} e_{7}\right)=\operatorname{deg}_{G}\left(e_{2} e_{4}^{2} e_{6} e_{8}\right)=v_{1}+v_{2}+2 v_{3}+2 v_{4}+2 v_{5}+v_{6}+v_{7}$.

Toric ideals of Graphs

Example

Note that different walks may correspond to the same binomial. For example both walks ($\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}, \boldsymbol{e}_{4}, \boldsymbol{e}_{5}, \boldsymbol{e}_{6}, \boldsymbol{e}_{7}, \boldsymbol{e}_{8}, \boldsymbol{e}_{9}, \boldsymbol{e}_{10}$) and ($e_{1}, e_{2}, e_{9}, e_{8}, e_{5}, e_{6}, e_{7}, e_{4}, e_{3}, e_{10}$) correspond to the same binomial

$$
B_{w}=e_{1} e_{3} e_{5} e_{7} e_{9}-e_{2} e_{4} e_{6} e_{8} e_{10}
$$

Toric ideals of Graphs

Example

Also note that for certain even closed walks w the binomial B_{w} may be zero, for example take w to be the even closed walk $\left(e_{1}, e_{2}, e_{9}, e_{8}, e_{5}, e_{5}, e_{8}, e_{9}, e_{2}, e_{1}\right)$ we have

$$
B_{w}=e_{1} e_{9} e_{5} e_{8} e_{2}-e_{2} e_{8} e_{5} e_{9} e_{1}=0
$$

For the walk $\xi=\left(e_{1}, e_{2}, e_{10}, e_{1}, e_{2}, e_{10}\right)$ we have

$$
B_{\xi}=e_{1} e_{10} e_{2}-e_{2} e_{1} e_{10}=0 .
$$

Toric ideals of Graphs

Example

There are examples that for every even closed walk w the binomial B_{w} is zero, in these cases

$$
I_{G}=0 .
$$

Toric ideals of Graphs

Theorem (R. Villarreal)

The toric ideal I_{G} of a graph G is generated by binomials of the form B_{w}, where w is an even closed walk.

Hypergraphs

A (multi)hypergraph H consists of a set of vertices
$V(H)=\left\{v_{1}, \ldots, v_{m}\right\}$ and a set of edges $E(H)=\left\{E_{1}, \ldots, E_{n}\right\}$, where an edge $E \in E(H)$ is a subset of the vertices. Let A_{H} be the vertex-edge incident matrix of the graph G. This is am $m \times n$ matrix with $0 / 1$ entries. The rows are indexed by the vertices and the columns by the edges. The element in the ij position of the matrix A_{H} is 1 if the vertex v_{i} belongs to the edge E_{j}, otherwise is zero.

Any $m \times n$ matrix with $0 / 1$ entries and nonzero columns give rise to a (multi)hypergraph.

Toric ideals of hypergraphs

Example

The vertex-edge incidence matrix of H.

$$
A_{G}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0
\end{array}\right) .
$$

Toric ideals of hypergraphs

Definition

Let $\left(E_{\text {blue }}, E_{\text {red }}\right)$ be a multiset collection of edges of $H=(V, E)$. We denote by $\operatorname{deg}_{\text {blue }}(v)$ and $\operatorname{deg}_{\text {red }}(v)$ the number of edges of $E_{\text {blue }}$ and $E_{\text {red }}$ containing the vertex v, respectively. We say that ($E_{\text {blue }}, E_{\text {red }}$) are balanced on V if $\operatorname{deg}_{\text {blue }}(v)=\operatorname{deg}_{\text {red }}(v)$ for each vertex $v \in V$. If ($E_{\text {blue }}, E_{\text {red }}$) are balanced on V then we say that $\left(E_{\text {blue }}, E_{\text {red }}\right)$ is a monomial walk.

Every monomial walk encodes a binomial

$$
f_{E_{\text {blue }}, E_{\text {red }}}=\prod_{E \in E_{\text {blue }}} E-\prod_{E \in E_{\text {red }}} E
$$

in I_{H}.

Theorem (Petrovic, Stassi)

The toric ideal I_{H} of a hypergraph is generated by binomials corresponding to monomial walks.

Toric ideals of hypergraphs

Toric ideals of hypergraphs

$E_{1} E_{2} E_{3} E_{4} E_{5}^{2} E_{6}^{2} E_{7}^{2}-E_{8} E_{9} E_{10} E_{11} E_{12} E_{13} E_{14}^{2} E_{15}^{2}$

Toric ideals of hypergraphs

Binomials in a toric ideal

Toric ideals are binomial ideals.
There are certain sets of binomials that are important:

- Graver basis
- Circuits
- Markov bases
- Indispensable binomials
- reduced Gröbner basis
- universal Gröbner basis

Graver basis

Definition

An irreducible binomial $x^{\mathrm{u}}-x^{\mathrm{v}}$ in I_{A} is called primitive if there exists no other binomial $x^{\mathrm{a}}-x^{\mathrm{b}} \in I_{A}$ such that x^{a} divides x^{u} and x^{b} divides x^{v}.

Definition

The set of all primitive binomials of a toric ideal I_{A} is called the Graver basis of I_{A}.

Graver basis

Let $A=\left[\begin{array}{lll}3 & 4\end{array}\right]$ then the binomial $x_{1}^{3} x_{2}^{4}-x_{3}^{5}$ belongs to the toric ideal I_{A} and is not primitive, since the binomial $x_{1}^{2} x_{2}-x_{3}^{2} \in I_{A}$ and

$$
\begin{gathered}
x_{1}^{2} x_{2} \mid x_{1}^{3} x_{2}^{4} \\
x_{3}^{2} \mid x_{3}^{5}
\end{gathered}
$$

In this example there are 7 primitive binomials:
$x_{1}^{4}-x_{2}^{3}, x_{1} x_{3}-x_{2}^{2}, x_{1}^{3}-x_{2} x_{3}, x_{1}^{2} x_{2}-x_{3}^{2}, x_{1}^{5}-x_{3}^{3}, x_{1} x_{2}^{3}-x+3^{3}, x_{2}^{5}-x_{3}^{4}$.

Conformal sum

Definition

Let $u, w_{1}, w_{2} \in \operatorname{Ker}_{\mathbb{Z}}(A)$ be such that $u=w_{1}+w_{2}$. We say that the above sum is a conformal decomposition of u and write $u=w_{1}+{ }_{c} w_{2}$ if

$$
u^{+}=w_{1}^{+}+{ }_{c} w_{2}^{+} \text {and } u^{-}=w_{1}^{-}+{ }_{c} w_{2}^{-} .
$$

If both w_{1} and w_{2} are non-zero, we call such a decomposition proper.
Note that the above condition means that:

- if the i-coordinate of u is positive then the i-coordinates of w_{1}, w_{2} are positive or zero
- if the i-coordinate of u is negative then the i-coordinates of w_{1}, w_{2} are negative or zero
- if the i-coordinate of u is zero then both the i-coordinates of w_{1}, w_{2} are zero.

Graver basis

Definition

The Graver basis of A, consists of the nonzero vectors in $\operatorname{Ker}_{\mathbb{Z}}(\boldsymbol{A})$ for which there is no proper conformal decomposition.

The Graver basis of A consists of vectors in $\operatorname{Ker}_{\mathbb{Z}}(A)$ and the Graver basis of I_{A} consists of binomials in I_{A}. Note also that if $u=w_{1}+{ }_{c} w_{2}$ then $-u=\left(-w_{1}\right)+c\left(-w_{2}\right)$. Therefore if u belongs to the Graver basis of A then $-u$ belongs to the Graver basis of A.

The binomial $x^{u^{+}}-x^{u^{-}}$is in the Graver basis of the toric ideal I_{A} if and only if the vector u is the Graver basis of A.

Theorem

The Graver basis is a finite set.

Graver basis

Every element v in $\operatorname{Ker}_{\mathbb{Z}}(\boldsymbol{A})$ can be written as a conformal sum of elements in the Graver basis of A.

$$
v=u_{1}+{ }_{c} u_{2}+{ }_{c} \cdots+{ }_{c} u_{s}
$$

Where $u_{1}, u_{2}, \cdots, u_{s}$ are not necessarily different and belong in the Graver basis of A and conformal means $v=u_{1}+u_{2}+\cdots+u_{s}$ and

- if the i-coordinate of v is positive then the i-coordinates of all u_{j} are positive or zero
- if the i-coordinate of v is negative then the i-coordinates of u_{j} are negative or zero
- if the i-coordinate of v is zero then all the i-coordinates of w_{j} are zero.

Graver basis

Let $A=\left[\begin{array}{lll}3 & 4 & 5\end{array}\right]$ then the Graver basis of \boldsymbol{A} consists of the following 7 elements:
$(4,-3,0),(1,-2,1),(3,-1,-1),(2,1,-2),(5,0,-3),(1,3,-3),(0,5,-4)$. The element $(3,4,-5)$ belongs to the kernel of A and can be written as a conformal sum:

$$
(3,4,-5)=(2,1,-2)+_{c}(1,3,-3) .
$$

Note also that

$$
(3,4,-5)=(3,-1,-1)+(0,5,-4)
$$

but this sum is not conformal.

Circuits

Definition

A non-zero vector $u \in \operatorname{Ker}_{\mathbb{Z}}(A)$ is called a circuit of A if its support

$$
\operatorname{supp}(u)=\left\{i \mid u_{i} \neq 0\right\}
$$

is minimal with respect to inclusion and the coordinates of u are relatively prime.

Definition

An irreducible binomial in I_{A} is called a circuit of I_{A} if its support

$$
\operatorname{supp}(u)=\left\{x_{i} \mid u_{i} \neq 0\right\}
$$

is minimal with respect to inclusion.

Circuits

If $u=\left(u_{1}, u_{2}, \cdots, u_{n}\right)$ is a circuit then the vectors $\left\{a_{i} \mid i \in \operatorname{supp}(u)\right\}$ are linearly dependent but any subset of them are linearly independent.

Let A be a $d \times n$ matrix of rank d and let $u=\left(u_{1}, u_{2}, \cdots, u_{n}\right)$ be a circuit. Let $\operatorname{supp}(u)=\left\{i_{1}, \cdots, i_{r}\right\}$ then the $d \times r$-matrix $\left[a_{i_{1}}, a_{i_{2}}, \cdots, a_{i_{r}}\right]$ has rank $r-1$. The vectors $a_{i_{1}}, a_{i_{2}}, \cdots, a_{i_{r-1}}$ are linearly independent therefore we can find vectors $a_{i_{r+1}}, a_{i_{r+2}}, \cdots, a_{i_{d+1}}$ such that $a_{i_{1}}, a_{i_{2}}, \cdots, a_{i_{r-1}}, a_{i_{r+1}}, a_{i_{r+2}}, \cdots, a_{i_{d+1}}$ is a basis for the column space of A. Then the $d \times(d+1)$-matrix $\left[a_{1}, a_{i_{2}}, \cdots, a_{i_{d+1}}\right]$ has rank d. The kernel of this matrix is generated by

$$
\sum_{j=1}^{d+1}(-1)^{j} \operatorname{det}\left(a_{i_{1}}, a_{i_{2}}, \cdots, a_{i_{j-1}}, a_{i_{j+1}}, \cdots, a_{i_{d+1}}\right) e_{i j}
$$

where $e_{i_{j}}$ is the i_{j}-unit vector. Since this is an integer vector and u is a circuit it must be an integer multiple of u. Therefore

$$
\begin{aligned}
& u_{i_{j}}=1 / g\left((-1)^{j} \operatorname{det}\left(a_{i_{1}}, a_{i_{2}}, \cdots, a_{i_{j-1}}, a_{i_{j+1}}, \cdots, a_{i_{d+1}}\right) e_{i_{i}}\right) \text {, where } \\
& \left.g=\operatorname{gcd}\left(\operatorname{det}\left(a_{i_{1}}, a_{i_{2}}, \cdots, a_{i_{j-1}}, a_{i_{j+1}}, \cdots,, a_{i_{d+1}}\right)\right) \mid 1 \leq j \leq r\right) .
\end{aligned}
$$

Circuits

Theorem

For every element v in $\operatorname{Ker}_{\mathbb{Z}}(A)$ there exist an integer multiple of it that can be written as a conformal sum of circuits of A.

$$
k v=c_{1}+{ }_{c} c_{2}+{ }_{c} \cdots+{ }_{c} c_{s}
$$

This theorem implies also that for every element v in $\operatorname{Ker}_{\mathbb{Z}}(A)$ there exist a circuit c such that $\operatorname{supp}\left(c^{+}\right) \subset \operatorname{supp}\left(u^{+}\right)$and $\operatorname{supp}\left(c^{-}\right) \subset \operatorname{supp}\left(u^{-}\right)$.

Example

Let $A=[345]$ then the Circuits of A are the following 3 elements: $(4,-3,0),(5,0,-3),(0,5,-4)$. The element $(3,4,-5)$ belongs to the kernel of A and a multiple of it can be written as a conformal sum of circuits:

$$
5(3,4,-5)=3(5,0,-3)+{ }_{c} 4(0,5,-4)
$$

Circuits

Theorem

Let I_{A} be a toric ideal and C_{A} the ideal generated by the circuits then $I_{A}=\operatorname{rad}\left(C_{A}\right)$.

Theorem

Let I_{A} be a toric ideal and C_{A} the ideal generated by the circuits then $V\left(I_{A}\right)=V\left(C_{A}\right)$.

Markov basis

Definition

A Markov basis of A is a finite subset M of $\operatorname{Ker}_{\mathbb{Z}}(A)$ such that whenever $\mathrm{w}, \mathrm{u} \in \mathbb{N}^{n}$ and $\mathrm{w}-\mathrm{u} \in \operatorname{Ker}_{\mathbb{Z}}(A)$ (i.e. $A \mathrm{w}^{t}=A \mathrm{u}^{t}$), there exists a subset $\left\{\mathrm{v}_{i}: i=1, \ldots, s\right\}$ of M that connects w to u . This means that $\left(\mathrm{w}-\sum_{i=1}^{p} \mathrm{v}_{i}\right) \in \mathbb{N}^{n}$ for all $1 \leq p \leq s$ and $\mathrm{w}-\mathrm{u}=\sum_{i=1}^{s} \mathrm{v}_{i}$. A Markov basis M of A is minimal if no subset of M is a Markov basis of A.

Note that the $\operatorname{deg}_{A}\left(x^{w}\right)=A w^{t}$ therefore x^{w} and x^{u} have the same A-degree. The set of all elements that have the same degree as x^{w} is called the fiber of x^{w} and is denoted:

$$
\operatorname{deg}^{-1}\left(x^{w}\right)
$$

The elements $\mathrm{v}_{i} \in M$ are elements in $\operatorname{Ker}_{\mathbb{Z}}(A)$ therefore $A v_{i}^{t}=0$ which means that

$$
x^{\left(w-\sum_{i=1}^{p} v_{i}\right)} \in \operatorname{deg}^{-1}\left(x^{w}\right) .
$$

Therefore a Markov basis is a set of moves that connects any two elements of the same fiber by moving inside the fiber.

Markov basis

Let $A=\left[\begin{array}{lll}3 & 4 & 5\end{array}\right]$ and I_{A} the corresponding toric ideal. A minimal Markov basis for $\boldsymbol{I}_{\boldsymbol{A}}$ is $(-3,1,1),(1,-2,1),(2,1,-2)$. The fiber of all the monomial having A-degree 35 consists of 14 elements:
$x_{1}^{10} x_{3}, x_{1}^{9} x_{2}^{2}, x_{1}^{7} x_{2} x_{3}^{2}, x_{1}^{6} x_{2}^{3} x_{3}$,
$x_{1}^{5} x_{2}^{5}, x_{1}^{5} x_{3}^{4}, x_{1}^{4} x_{2}^{2} x_{3}^{3}, x_{1}^{3} x_{2}^{4} x_{3}^{2}, x_{1}^{2} x_{2}^{6} x_{3}, x_{1}^{2} x_{2} x_{3}^{5}, x_{1} x_{2}^{8}, x_{1} x_{2}^{3} x_{3}^{5}, x_{2}^{5} x_{3}^{3}, x_{3}^{7}$.

Markov basis

Theorem (Diaconis-Sturmfels 1998)

M is a minimal Markov basis of A if and only if the set $\left\{x^{\mathrm{u}^{+}}-x^{\mathrm{u}^{-}}: \mathrm{u} \in M\right\}$ is a minimal generating set of I_{A}.

Definition

We call a minimal Markov basis of I_{A} any minimal generating set of I_{A}.

Markov bases

In the toric ideal of the complete graph on 10 vertices there are 3^{210}
different minimal Markov bases. Every minimal Markov basis contains 420 elements.

Toric ideals

Apostolos Thoma

Department of Mathematics
University of loannina

EMS Summer School on Multigraded Algebra and Applications Moieciu, Romania

