Toric ideals and Gröbner bases

Apostolos Thoma
Department of Mathematics
University of loannina

EMS Summer School on Multigraded Algebra and Applications Moieciu, Romania

Toric ideals

Let $A=\left\{\mathrm{a}_{1}, \ldots, \mathrm{a}_{n}\right\} \subseteq \mathbb{Z}^{m}$ be a set of vectors in \mathbb{Q}^{m}.
Let $A=\left[\mathrm{a}_{1} \ldots \mathrm{a}_{n}\right] \in \mathbb{Z}^{m \times n}$ be an integer matrix with columns a_{j}. For a vector $u \in \operatorname{Ker}_{\mathbb{Z}}(\boldsymbol{A})$ we let $\mathrm{u}^{+}, \mathrm{u}^{-}$be the unique vectors in \mathbb{N}^{n} with disjoint support such that $u=u^{+}-u^{-}$.

Definition

The toric ideal I_{A} of A is the ideal in $K\left[x_{1}, \cdots, x_{n}\right]$ generated by all binomials of the form $x^{u^{+}}-x^{u^{-}}$where $u \in \operatorname{Ker}_{\mathbb{Z}}(A)$.

A toric ideal is a binomial ideal.

Binomials in a toric ideal

Toric ideals are binomial ideals.
There are certain sets of binomials that are important:

- Graver basis
- Circuits
- Markov bases
- Indispensable binomials
- reduced Gröbner basis
- universal Gröbner basis

Markov basis

Theorem (Diaconis-Sturmfels 1998)

M is a minimal Markov basis of A if and only if the set $\left\{x^{\mathrm{u}^{+}}-x^{\mathrm{u}^{-}}: \mathrm{u} \in M\right\}$ is a minimal generating set of I_{A}.

Definition

We call a minimal Markov basis of I_{A} any minimal generating set of I_{A}.

Markov bases

In the toric ideal of the complete graph on 10 vertices there are 3^{210}
different minimal Markov bases. Every minimal Markov basis contains 420 elements.

Generic toric ideals

A toric ideal I_{A} is called generic if it is minimally generated by binomials with full support.

Example

$$
\left.\begin{array}{c}
A=\left(\begin{array}{lll}
20 & 24 & 25
\end{array} 31\right.
\end{array}\right), ~ \begin{array}{ll}
\\
I_{A}=<x_{3}^{3}-x_{1} x_{2} x_{4}, x_{1}^{4}-x_{2} x_{3} x_{4}, x_{4}^{3}-x_{1} x_{2}^{2} x_{3}, x_{2}^{4}-x_{1}^{2} x_{3} x_{4}, \\
x_{1}^{3} x_{3}^{2}-x_{2}^{2} x_{4}^{2}, x_{1}^{2} x_{2}^{3}-x_{3}^{2} x_{4}^{2}, x_{1}^{3} x_{4}^{2}-x_{2}^{3} x_{3}^{2}>.
\end{array}
$$

- Every generic toric ideal has a unique minimal Markov basis.
- If the generic toric ideal is not a principal ideal then none of the generators is a circuit.

How many Markov bases exist?

There are two main cases:
1 st case. The semigroup $\mathbb{N} A$ is positive, that means
$\operatorname{Ker}_{\mathbb{Z}}(\boldsymbol{A}) \cap \mathbb{N}^{n}=\{0\}$.

- Every fiber is finite.
- Every minimal Markov basis has the same number of elements.
- There are finitely many different minimal Markov bases.
- The multiset of fibers for which the elements of a minimal Markov basis belong to is an invariant of the toric ideal.
- All minimal Markov bases are subsets of the Graver basis.

2nd case. The semigroup $\mathbb{N} A$ is not positive, that means
$\operatorname{Ker}_{\mathbb{Z}}(\boldsymbol{A}) \cap \mathbb{N}^{n} \neq\{0\}$.

- Every fiber is infinite.
- Different minimal Markov bases may have different number of elements.
- There are infinitely many different minimal Markov bases.
- The multiset of fibers that the elements of a minimal Markov basis belong to is not invariant of the toric ideal.
- There is at least one minimal Markov basis which is a subset of the Graver basis.

Markov basis

Let $A=[1-1]$, the simplest example of a matrix such that the semigroup $\mathbb{N} A$ is not positive, since $(1,1) \in \operatorname{Ker}_{\mathbb{Z}}(\boldsymbol{A}) \cap \mathbb{N}^{2}$.
The Graver basis of A is $\{1-x y\}$.
The following sets are some of the infinitely many minimal Markov bases:

- $\{1-x y\}$
- $\left\{1-x^{2} y^{2}, 1-x^{3} y^{3}\right\}$
- $\left\{1-x^{6} y^{6}, 1-x^{10} y^{10}, 1-x^{15} y^{15}\right\}$
- $\left\{1-x^{2} y^{2}, x-x^{2} y\right\}$
- $\left\{1-x^{5} y^{5}, x y^{3}-x^{2014} y^{2016}\right\}$
H. Charalambous, A. Thoma, M. Vladoiu, Markov Bases of Lattice Ideals

Markov basis

Let $A=[1-1]$, the simplest example of a matrix such that the semigroup $\mathbb{N} A$ is not positive, since $(1,1) \in \operatorname{Ker}_{\mathbb{Z}}(\boldsymbol{A}) \cap \mathbb{N}^{2}$.
The Graver basis of A is $\{1-x y\}$.
The following sets are some of the infinitely many minimal Markov bases:

- $\{1-x y\}$
- $\left\{1-x^{2} y^{2}, 1-x^{3} y^{3}\right\}$
- $\left\{1-x^{6} y^{6}, 1-x^{10} y^{10}, 1-x^{15} y^{15}\right\}$
- $\left\{1-x^{2} y^{2}, x-x^{2} y\right\}$
- $\left\{1-x^{5} y^{5}, x y^{3}-x^{2014} y^{2016}\right\}$
H. Charalambous, A. Thoma, M. Vladoiu, Markov Bases of Lattice Ideals

Indispensable binomials

Definition

A binomial that belongs (up to sign) to every binomial generating set of the toric ideal I_{A} is called indispensable.

- All elements in a minimal Markov basis of a generic toric ideal are indispensable.
- None of the elements in any minimal Markov basis of the toric ideal of the complete graph on 10 vertices is indispensable.

Gröbner bases

A Gröbner basis for an ideal $I \subset k\left[x_{1}, \ldots, x_{n}\right]$ is a set of generators of the ideal I, not necessarily minimal, with good computational properties.

Monomial ideals

Let k be a field and let $k\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring in n variables over k.
A monomial is a product $x^{\mathrm{a}}=x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{n}^{a_{n}}$, where
$\mathrm{a}=\left(a_{1}, a_{2}, \cdots, a_{n}\right) \in \mathbb{N}_{0}^{n}$.

Definition

An ideal $I \subset k\left[x_{1}, \ldots, x_{n}\right]$ is called a monomial ideal if it is generated by monomials.

Theorem

Every monomial ideal has a finite unique minimal system of monomial generators.

Monomial ideals

Theorem

Let M be a monomial ideal in $k\left[x_{1}, \ldots, x_{n}\right]$ and let m_{1}, \ldots, m_{s} be the unique minimal system of monomial generators of M. Then

- the monomial m belongs to the monomial ideal M if and only if there exists an $i \in\{1, \cdots, s\}$ such that $m=m_{i} q_{i}$, where q_{i} is a monomial in $k\left[x_{1}, \ldots, x_{n}\right]$.
- the polynomial $f=a_{1} x^{\mathrm{u}_{1}}+a_{2} x^{\mathrm{u}_{2}}+\ldots a_{r} x^{\mathrm{u}_{r}}$, with each $a_{i} \neq 0$, belongs to the monomial ideal M if and only if each monomial $x^{u_{i}}$ belongs to M, where $i \in\{1, \ldots, r\}$.

Monomial orders

By T^{n} we denote the set of monomials x^{a} in $k\left[x_{1}, \ldots, x_{n}\right]$.

$$
T^{n}=\left\{x^{a} \mid a \in \mathbb{N}_{0}^{n}\right\}
$$

Definition

By a monomial order on T^{n} we mean a binary relation \leq on T^{n} such that

- for every $x^{a} \in T^{n}$ we have $x^{a} \leq x^{a}$ (reflexive)
- if $x^{a} \leq x^{b}$ and $x^{b} \leq x^{a}$ then $x^{a}=x^{b}$ (antisymmetric)
- if $x^{a} \leq x^{b}$ and $x^{b} \leq x^{c}$ then $x^{a} \leq x^{c}$ (transitive)
- if $x^{a}, x^{b} \in T^{n}$ then $x^{a} \leq x^{b}$ or $x^{b} \leq x^{a}$ (total order)
- $1<x^{a}$ for all $x^{a} \in T^{n}$ with $x^{a} \neq 1$
- If $x^{a}<x^{b}$ then $x^{a} x^{c}<x^{b} x^{c}$ for all $x^{c} \in T^{n}$.

Monomial orders

Definition

We say that $x^{a}<x^{b}$ if $x^{a} \leq x^{b}$ and $x^{a} \neq x^{b}$.

If $n=1$ then there is a unique monomial order (on T^{1}).
$1<x_{1}$ therefore $x_{1}<x_{1}^{2}$ therefore $x_{1}^{2}<x_{1}^{3} \cdots$
Thus

$$
1<x_{1}<x_{1}^{2}<x_{1}^{3}<\cdots .
$$

Lexicographic monomial order

Definition (Lexicographic order with $x_{1}>x_{2}>\cdots>x_{n}$)

We define $x^{a}=x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{n}^{a_{n}}>x^{b}=x_{1}^{b_{1}} x_{2}^{b_{2}} \cdots x_{n}^{b_{n}}$ if and only if there exists an $i \in\{1,2, \cdots, n\}$ such that

$$
\begin{gathered}
a_{1}=b_{1} \\
\ldots \\
a_{i-1}=b_{i-1} \\
a_{i}>b_{i}
\end{gathered}
$$

There are n ! different Lexicographic monomial orders. We denote the Lexicographic monomial order > by

$$
>_{\text {lex }} .
$$

Degree Lexicographic monomial order

Definition (Degree Lexicographic order with $x_{1}>x_{2}>\cdots>x_{n}$)

We define $x^{a}=x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{n}^{a_{n}}>x^{b}=x_{1}^{b_{1}} x_{2}^{b_{2}} \cdots x_{n}^{b_{n}}$ if and only if $a_{1}+a_{2}+\cdots+a_{n}>b_{1}+b_{2}+\cdots+b_{n}$ or $a_{1}+a_{2}+\cdots+a_{n}=b_{1}+b_{2}+\cdots+b_{n}$ and there exists an $i \in\{1,2, \cdots, n\}$ such that

$$
\begin{aligned}
& a_{1}=b_{1} \\
& \ldots \\
& a_{i-1}=b_{i-1} \\
& a_{i}>b_{i}
\end{aligned}
$$

There are n ! different Degree lexicographic monomial orders. We denote the Degree lexicographic monomial order $>$ by

$$
>\text { deglex }
$$

Degree Lexicographic monomial order

Definition (Degree reverse lexicographic order with
$\left.x_{1}>x_{2}>\cdots>x_{n}\right)$
We define $x^{a}=x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{n}^{a_{n}}>x^{b}=x_{1}^{b_{1}} x_{2}^{b_{2}} \cdots x_{n}^{b_{n}}$ if and only if $a_{1}+a_{2}+\cdots+a_{n}>b_{1}+b_{2}+\cdots+b_{n}$ or $a_{1}+a_{2}+\cdots+a_{n}=b_{1}+b_{2}+\cdots+b_{n}$ and there exists an $i \in\{1,2, \cdots, n\}$ such that

$$
\begin{aligned}
a_{n} & =b_{n} \\
& \cdots \\
a_{i+1} & =b_{i+1} \\
a_{i} & <b_{i} .
\end{aligned}
$$

There are n ! different Degree reverse lexicographic monomial orders. We denote the Degree reverse lexicographic monomial order $>$ by

$$
>\text { degrevlex }
$$

Monomial order

Example

In the polynomial ring $k\left[x_{1}, x_{2}, x_{3}\right]$ with $x_{1}>x_{2}>x_{3}$ for the monomials $x_{1}^{2}, x_{1} x_{2} x_{3}$ and x_{2}^{3} we have

- $x_{1}^{2} \gg_{\text {lex }} x_{1} x_{2} x_{3}>_{\text {lex }} x_{2}^{3}$
- $x_{1} x_{2} x_{3}>$ deglex $x_{2}^{3}>$ deglex x_{1}^{2}
- $x_{2}^{3}>{ }_{\text {degrevlex }} x_{1} x_{2} x_{3}>$ degrevlex x_{1}^{2}

Monomial order

Sometimes we can define a monomial order using a matrix $U \in \mathbb{R}^{m \times n}$. We define $x^{a}=x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{n}^{a_{n}}>x^{b}=x_{1}^{b_{1}} x_{2}^{b_{2}} \cdots x_{n}^{b_{n}}$ if and only if the first (from the top) nonzero coordinate of

$$
U(a-b)^{t}
$$

is positive.

Lexicographic order with $x_{1}>x_{2}>\cdots>x_{n}$

The lexicographic monomial order with $x_{1}>x_{2}>\cdots>x_{n}$ can be defined by the identity $n \times n$ matrix,

$$
I_{n \times n}=\left(\delta_{i j}\right)=\left(\begin{array}{cccccc}
1 & 0 & 0 & \ldots & 0 & 0 \\
0 & 1 & 0 & \ldots & 0 & 0 \\
0 & 0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ldots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 1 & 0 \\
0 & 0 & 0 & \ldots & 0 & 1
\end{array}\right) .
$$

while any lexicographic monomial order can be defined by a permutation matrix

$$
\left(\delta_{i \sigma(j)}\right) .
$$

Degree Lexicographic order with $x_{1}>x_{2}>\cdots>x_{n}$

The degree lexicographic monomial order with $x_{1}>x_{2}>\cdots>x_{n}$ can be defined by the $n \times n$ matrix,

$$
D=\left(\begin{array}{cccccc}
1 & 1 & 1 & \ldots & 1 & 1 \\
1 & 0 & 0 & \ldots & 0 & 0 \\
0 & 1 & 0 & \ldots & 0 & 0 \\
0 & 0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ldots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 1 & 0 \\
0 & 0 & 0 & \ldots & 0 & 1
\end{array}\right)
$$

while any other degree lexicographic monomial order can be defined by a matrix obtained by a permutation of the last n rows of D.

Degree Reverse Lexicographic order with $x_{1}>x_{2}>\cdots>x_{n}$

The degree reverse lexicographic monomial order with $x_{1}>x_{2}>\cdots>x_{n}$ can be defined by the $n \times n$ matrix,

$$
R=\left(\begin{array}{cccccc}
1 & 1 & 1 & \ldots & 1 & 1 \\
0 & 0 & 0 & \ldots & 0 & -1 \\
0 & 1 & 0 & \ldots & -1 & 0 \\
\vdots & \vdots & \vdots & \ldots & \vdots & \vdots \\
0 & 0 & -1 & \ldots & 0 & 0 \\
0 & -1 & 0 & \ldots & 0 & 0 \\
-1 & 0 & 0 & \ldots & 0 & 0
\end{array}\right)
$$

while any other degree reverse lexicographic monomial order can be defined by a matrix obtained by a permutation of the last n rows of R.

Monomial orders

If $n \geq 2$ then there are infinitely many monomial orders on T^{n}. For example for $n=2$ there are infinitely many monomial orders on T^{2} defined by the matrices

$$
A=\left(\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right)
$$

or

$$
B=\left(\begin{array}{ll}
b & 1 \\
1 & 0
\end{array}\right)
$$

where $a, b \in \mathbb{R}_{\geq 0}$.
Note that all are distinct except if $a b=1$ and $a \notin \mathbb{Q}_{\geq 0}$.

Monomial orders defined by matrices

Theorem (Robbiano)

A matrix $U \in \mathbb{R}^{m \times n}$ defines a monomial order if

- $\operatorname{ker}(U) \cap \mathbb{N}_{0}^{n}=\{(0,0, \cdots, 0)\}$
- the first nonzero coordinate in every column of U is positive. Every monomial order can be defined by an appropriate matrix.

Initial monomial

Let $>$ be a monomial order on T^{n}. Let f be a nonzero polynomial in $k\left[x_{1}, \ldots, x_{n}\right]$. We may write

$$
f=a_{1} x^{\mathrm{u}_{1}}+a_{2} x^{\mathrm{u}_{2}}+\cdots+a_{r} x^{\mathrm{u}_{r}},
$$

where $a_{i} \neq 0$ and $x^{\mathrm{u}_{1}}>x^{\mathrm{u}_{2}}>\cdots>x^{\mathrm{u}_{r}}$.

Definition

For $f \neq 0$ in $k\left[x_{1}, \ldots, x_{n}\right]$, we define the initial monomial of f to be $i n_{<}(f)=x^{\mathrm{u}_{1}}$. The coefficient a_{1} is called the initial coefficient of f and is denoted by c_{f}. For a subset S of $k\left[x_{1}, \ldots, x_{n}\right]$ we define the initial monomial ideal of S to be the monomial ideal $\mathrm{in}_{<}(S)=\left\langle\mathrm{in} n_{<}(f) \mid f \in S\right\rangle$.

Gröbner bases

Definition

A set of non-zero polynomials $G=\left\{g_{1}, \ldots, g_{t}\right\}$ contained in an ideal $/$ is called Gröbner basis for I if and only if for all nonzero $f \in I$ there exists $i \in\{1, \ldots, t\}$ such that $i n_{<}\left(g_{i}\right)$ divides $i n_{<}(f)$.

Theorem

A set of non-zero polynomials $G=\left\{g_{1}, \ldots, g_{t}\right\}$ contained in an ideal I is a Gröbner basis for I if and only if

$$
i n_{<}(G)=i n_{<}(I) .
$$

Gröbner bases

Let $<$ be a monomial order on $k\left[x_{1}, \ldots, x_{n}\right]$ and let $I \subset k\left[x_{1}, \ldots, x_{n}\right]$ be an ideal.

Definition

The monomials which do not belong to $\mathrm{in}_{<}(I)$ are called standard monomials.

Example

Let I be the ideal $<x_{1}^{2}-x_{2}^{3}, x_{2}^{2}-x_{3}^{3}, x_{3}^{2}-x_{4}^{3}>$ of the polynomial ring $k\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$ with the lexicographic monomial order with $x_{1}>x_{2}>x_{3}>x_{4}$. Then in $<_{\text {lex }}(I)=<x_{1}^{2}, x_{2}^{2}, x_{3}^{2}>$ therefore $\left\{x_{1}^{2}-x_{2}^{3}, x_{2}^{2}-x_{3}^{3}, x_{3}^{2}-x_{4}^{3}\right\}$ is a Gröbner basis for I.
The standard monomials are of the form
$x_{4}^{i}, x_{1} x_{4}^{i}, x_{2} x_{4}^{i}, x_{3} x_{4}^{i}, x_{1} x_{2} x_{4}^{i}, x_{1} x_{3} x_{4}^{i}, x_{2} x_{3} x_{4}^{i}, x_{1} x_{2} x_{3} x_{4}^{i}$ for some $i \in \mathbb{N}_{0}$.

Division

Let $>$ be a monomial order on $k\left[x_{1}, \ldots, x_{n}\right]$.

Definition

Given polynomials f, g, h in $k\left[x_{1}, \ldots, x_{n}\right]$ with $g \neq 0$, we say that f reduces to h modulo g, and we write $f \rightarrow_{g} h$, if and only if $i n_{<}(g)$ divides a nonzero term X of f and

$$
h=f-\frac{X}{c_{g} i n_{<}(g)} g .
$$

Example

Let $f=x_{1}^{4} x_{3}+2 x_{1}^{2} x_{2}^{2}-x_{3}^{5}$ and $g=x_{1}^{2} x_{2}-x_{3}$ in $\mathbb{Q}\left[x_{1}, x_{2}, x_{3}\right]$ with the lexicographic monomial order with $x_{1}>x_{2}>x_{3}$. Then $\mathrm{in}_{<}(g)=x_{1}^{2} x_{2}$ divides the term $X=2 x_{1}^{2} x_{2}^{2}$ and $h=$

$$
f-\frac{X}{c_{g} i n_{<}(g)} g=x_{1}^{4} x_{3}+2 x_{1}^{2} x_{2}^{2}-x_{3}^{5}-\frac{2 x_{1}^{2} x_{2}^{2}}{x_{1}^{2} x_{2}}\left(x_{1}^{2} x_{2}-x_{3}\right)=x_{1}^{4} x_{3}+2 x_{2} x_{3}-x_{3}^{5}
$$

Division

Let $>$ be a monomial order in $k\left[x_{1}, \ldots, x_{n}\right]$.

Definition

Given polynomials $f, f_{1}, \cdots, f_{s}, h$ in $k\left[x_{1}, \ldots, x_{n}\right]$ with $f_{i} \neq 0$. We say that f reduces to h modulo $F=\left\{f_{1}, f_{2}, \cdots, f_{s}\right\}$, and we write

$$
f \rightarrow_{F} h
$$

if and only if there exists a sequence of indices i_{1}, \cdots, i_{t} such that

$$
f \rightarrow f_{f_{1}} h_{1} \rightarrow_{f_{i_{2}}} h_{2} \rightarrow \cdots \rightarrow_{f_{i_{t}}} h .
$$

Division

Let $>$ be a monomial order on $k\left[x_{1}, \ldots, x_{n}\right]$.

Definition

A polynomial r is called reduced with respect to a set of non-zero polynomials $F=\left\{f_{1}, f_{2}, \cdots, f_{s}\right\}$ if

- $r=0$ or
- no term of r is a multiple of any $\mathrm{in}_{<}\left(f_{i}\right)$.

Definition

If $f \rightarrow_{F} r$ and r is reduced with respect to F then r is called a remainder for f modulo F.

Remainder

Remark

The remainder of a polynomial f modulo a set of non-zero polynomials may not be unique.

Example

Let $f=x_{1} x_{2} x_{3}+2 x_{1}$ and $F=\left\{f_{1}=x_{1} x_{2}-1, f_{2}=x_{2} x_{3}-x_{1}\right\}$ in $\mathbb{Q}\left[x_{1}, x_{2}, x_{3}\right]$ with the degree lexicographic monomial order with $x_{1}>x_{2}>x_{3}$. Then $f \rightarrow_{f_{1}} 2 x_{1}+x_{3}$ and $f \rightarrow_{f_{2}} x_{1}^{2}+2 x_{1}$. Note that both $2 x_{1}+x_{3}$ and $x_{1}^{2}+2 x_{1}$ are reduced with respect to F, thus both are remainders for f modulo F.

Gröbner bases

Theorem

Let I be a non-zero ideal in $k\left[x_{1}, \ldots, x_{n}\right]$. The set of non-zero polynomials $G=\left\{g_{1}, g_{2}, \cdots, g_{t}\right\} \subset I$ is a Gröbner basis for I if and only if the remainder of any polynomial $f \in k\left[x_{1}, \ldots, x_{n}\right]$ by G is unique.

Theorem

Let I be a non-zero ideal in $k\left[x_{1}, \ldots, x_{n}\right]$. The set of non-zero polynomials $G=\left\{g_{1}, g_{2}, \cdots, g_{t}\right\} \subset I$ is a Gröbner basis for I if and only if the remainder of any polynomial $f \in I$ by G is zero.

The remainder of any polynomial modulo a Gröbner basis is a linear combination of standard monomials.

S-polynomials

Definition (Buchberger)

Let f, g be two non-zero polynomials in $k\left[x_{1}, \ldots, x_{n}\right]$. Let $L=L C M\left(i n_{<}(f), i n_{<}(g)\right)$. The polynomial

$$
S(f, g)=\frac{L}{c_{f} i n_{<}(f)} f-\frac{L}{c_{g} i n_{<}(g)} g
$$

is called the S-polynomial of f and g.

Example

Let $f=3 x^{2} y z-y^{3} z^{3}, g=x y^{2}+z^{2}$ in the polynomial ring $\mathbb{Q}[x, y, z]$ with the lexicographic monomial order with $x>y>z$. Then
$L=\operatorname{LCM}\left(i n_{<}(f), i n_{<}(g)\right)=\operatorname{LCM}\left(x^{2} y z, x y^{2}\right)=x^{2} y^{2} z$ and

$$
S(f, g)=\frac{x^{2} y^{2} z}{3 x^{2} y z} f-\frac{x^{2} y^{2} z}{x y^{2}} g=-x z^{3}-\frac{y^{4} z^{3}}{3} .
$$

Gröbner bases

Remark

The S-polynomial of f and g belongs to the ideal generated by f, g.

Theorem

Let I be a non-zero ideal in $k\left[x_{1}, \ldots, x_{n}\right]$. The set of non-zero polynomials $G=\left\{g_{1}, g_{2}, \cdots, g_{t}\right\} \subset I$ is a Gröbner basis for I if and only if the remainder of any polynomial $f \in I$ by G is zero.

Theorem (Buchberger)

Let I be a non-zero ideal in $K\left[x_{1}, \ldots, x_{n}\right]$. The set of non-zero polynomials $G=\left\{g_{1}, g_{2}, \cdots, g_{t}\right\} \subset 1$ is a Gröbner basis for $I=<g_{1}, g_{2}, \cdots, g_{t}>$ if and only if $S(f, g) \rightarrow_{G} 0$.

Buchberger's Algorithm

- INPUT: $F=\left\{f_{1}, f_{2}, \cdots, f_{t}\right\}$ a set of non-zero polynomials of $K\left[x_{1}, \ldots, x_{n}\right]$
- OUTPUT: $G=\left\{g_{1}, g_{2}, \cdots, g_{s}\right\}$ a Gröbner basis for $I=<f_{1}, f_{2}, \cdots, f_{t}>$.
- SET: $G:=F, S=\left\{S\left(f_{i}, f_{j}\right) \mid f_{i} \neq f_{j} \in G\right\}$
- WHILE $S \neq \emptyset$ DO

Choose any $S(f, g) \in S$
set $S: S-\{S(f, g)\}$
$S(f, g) \rightarrow_{G} h$, where h is the remainder modulo G

- IF $h \neq 0$ THEN
$S:=S \cup\{S(u, h) \mid$ for all $u \in G\}$
$G:=G \cup\{h\}$.

Buchberger's Algorithm

Let $I=<x^{2} y+z, x z+y>$ be an ideal in $\mathbb{R}[x, y, z]$. Let $<_{\text {deglex }}$ be the degree lexicographic monomial order in $\mathbb{R}[x, y, z]$ with $x>y>z$.

- Set $G_{0}=\left\{g_{1}=x^{2} y+z, g_{2}=x z+y\right\}$ and $S_{0}=\left\{S\left(g_{1}, g_{2}\right)\right\}$

- $S_{1} \neq \emptyset$. Reduce $S\left(g_{1}, g_{3}\right)$ with respect to G_{1}

Buchberger's Algorithm

Let $I=<x^{2} y+z, x z+y>$ be an ideal in $\mathbb{R}[x, y, z]$. Let $<$ deglex be the degree lexicographic monomial order in $\mathbb{R}[x, y, z]$ with $x>y>z$.

- Set $G_{0}=\left\{g_{1}=x^{2} y+z, g_{2}=x z+y\right\}$ and $S_{0}=\left\{S\left(g_{1}, g_{2}\right)\right\}$
- $S_{0} \neq \emptyset$. Reduce $S\left(g_{1}, g_{2}\right)$ with respect to $G_{0}: S\left(g_{1}, g_{2}\right)=$

$$
\frac{x^{2} y z}{x^{2} y}\left(x^{2} y+z\right)-\frac{x^{2} y z}{x z}(x z+y)=-x y^{2}+z^{2} \rightarrow_{G_{0}}-x y^{2}+z^{2} \neq 0
$$

Buchberger's Algorithm

Let $I=<x^{2} y+z, x z+y>$ be an ideal in $\mathbb{R}[x, y, z]$. Let $<_{\text {deglex }}$ be the degree lexicographic monomial order in $\mathbb{R}[x, y, z]$ with $x>y>z$.

- Set $G_{0}=\left\{g_{1}=x^{2} y+z, g_{2}=x z+y\right\}$ and $S_{0}=\left\{S\left(g_{1}, g_{2}\right)\right\}$
- $S_{0} \neq \emptyset$. Reduce $S\left(g_{1}, g_{2}\right)$ with respect to $G_{0}: S\left(g_{1}, g_{2}\right)=$

$$
\frac{x^{2} y z}{x^{2} y}\left(x^{2} y+z\right)-\frac{x^{2} y z}{x z}(x z+y)=-x y^{2}+z^{2} \rightarrow_{G_{0}}-x y^{2}+z^{2} \neq 0
$$

- Set $G_{1}=\left\{g_{1}, g_{2}, g_{3}=-x y^{2}+z^{2}\right\}$ and

$$
S_{1}=\left(S_{0}-\left\{S\left(g_{1}, g_{2}\right)\right\}\right) \cup\left\{S\left(g_{1}, g_{3}\right), S\left(g_{2}, g_{3}\right)\right\}
$$

- Set $G_{2}=G_{1}$ and $S_{2}=S_{1}-\left\{S\left(g_{1}, g_{2}\right)\right\}=\left\{S\left(g_{2}, g_{3}\right)\right\}$
- $S_{2} \neq \emptyset$. Reduce $S\left(g_{2}, g_{3}\right)$ with respect to $G_{2}: S\left(g_{2}, g_{3}\right)=$

Buchberger's Algorithm

Let $I=<x^{2} y+z, x z+y>$ be an ideal in $\mathbb{R}[x, y, z]$. Let $<$ deglex be the degree lexicographic monomial order in $\mathbb{R}[x, y, z]$ with $x>y>z$.

- Set $G_{0}=\left\{g_{1}=x^{2} y+z, g_{2}=x z+y\right\}$ and $S_{0}=\left\{S\left(g_{1}, g_{2}\right)\right\}$
- $S_{0} \neq \emptyset$. Reduce $S\left(g_{1}, g_{2}\right)$ with respect to $G_{0}: S\left(g_{1}, g_{2}\right)=$

$$
\frac{x^{2} y z}{x^{2} y}\left(x^{2} y+z\right)-\frac{x^{2} y z}{x z}(x z+y)=-x y^{2}+z^{2} \rightarrow_{G_{0}}-x y^{2}+z^{2} \neq 0
$$

- Set $G_{1}=\left\{g_{1}, g_{2}, g_{3}=-x y^{2}+z^{2}\right\}$ and

$$
S_{1}=\left(S_{0}-\left\{S\left(g_{1}, g_{2}\right)\right\}\right) \cup\left\{S\left(g_{1}, g_{3}\right), S\left(g_{2}, g_{3}\right)\right\}
$$

- $S_{1} \neq \emptyset$. Reduce $S\left(g_{1}, g_{3}\right)$ with respect to G_{1} :

$$
S\left(g_{1}, g_{3}\right)=\frac{x^{2} y^{2}}{x^{2} y}\left(x^{2} y+z\right)-\frac{x^{2} y^{2}}{-x y^{2}}\left(-x y^{2}+z^{2}\right)=x z^{2}+y z \rightarrow_{G_{1}} 0
$$

Buchberger's Algorithm

Let $I=<x^{2} y+z, x z+y>$ be an ideal in $\mathbb{R}[x, y, z]$. Let $<_{\text {deglex }}$ be the degree lexicographic monomial order in $\mathbb{R}[x, y, z]$ with $x>y>z$.

- Set $G_{0}=\left\{g_{1}=x^{2} y+z, g_{2}=x z+y\right\}$ and $S_{0}=\left\{S\left(g_{1}, g_{2}\right)\right\}$
- $S_{0} \neq \emptyset$. Reduce $S\left(g_{1}, g_{2}\right)$ with respect to $G_{0}: S\left(g_{1}, g_{2}\right)=$

$$
\frac{x^{2} y z}{x^{2} y}\left(x^{2} y+z\right)-\frac{x^{2} y z}{x z}(x z+y)=-x y^{2}+z^{2} \rightarrow_{G_{0}}-x y^{2}+z^{2} \neq 0
$$

- Set $G_{1}=\left\{g_{1}, g_{2}, g_{3}=-x y^{2}+z^{2}\right\}$ and

$$
S_{1}=\left(S_{0}-\left\{S\left(g_{1}, g_{2}\right)\right\}\right) \cup\left\{S\left(g_{1}, g_{3}\right), S\left(g_{2}, g_{3}\right)\right\}
$$

- $S_{1} \neq \emptyset$. Reduce $S\left(g_{1}, g_{3}\right)$ with respect to G_{1} :

$$
S\left(g_{1}, g_{3}\right)=\frac{x^{2} y^{2}}{x^{2} y}\left(x^{2} y+z\right)-\frac{x^{2} y^{2}}{-x y^{2}}\left(-x y^{2}+z^{2}\right)=x z^{2}+y z \rightarrow_{G_{1}} 0
$$

- Set $G_{2}=G_{1}$ and $S_{2}=S_{1}-\left\{S\left(g_{1}, g_{2}\right)\right\}=\left\{S\left(g_{2}, g_{3}\right)\right\}$.

Buchberger's Algorithm

Let $I=<x^{2} y+z, x z+y>$ be an ideal in $\mathbb{R}[x, y, z]$. Let $<$ deglex be the degree lexicographic monomial order in $\mathbb{R}[x, y, z]$ with $x>y>z$.

- Set $G_{0}=\left\{g_{1}=x^{2} y+z, g_{2}=x z+y\right\}$ and $S_{0}=\left\{S\left(g_{1}, g_{2}\right)\right\}$
- $S_{0} \neq \emptyset$. Reduce $S\left(g_{1}, g_{2}\right)$ with respect to $G_{0}: S\left(g_{1}, g_{2}\right)=$

$$
\frac{x^{2} y z}{x^{2} y}\left(x^{2} y+z\right)-\frac{x^{2} y z}{x z}(x z+y)=-x y^{2}+z^{2} \rightarrow_{G_{0}}-x y^{2}+z^{2} \neq 0
$$

- Set $G_{1}=\left\{g_{1}, g_{2}, g_{3}=-x y^{2}+z^{2}\right\}$ and

$$
S_{1}=\left(S_{0}-\left\{S\left(g_{1}, g_{2}\right)\right\}\right) \cup\left\{S\left(g_{1}, g_{3}\right), S\left(g_{2}, g_{3}\right)\right\}
$$

- $S_{1} \neq \emptyset$. Reduce $S\left(g_{1}, g_{3}\right)$ with respect to G_{1} :

$$
S\left(g_{1}, g_{3}\right)=\frac{x^{2} y^{2}}{x^{2} y}\left(x^{2} y+z\right)-\frac{x^{2} y^{2}}{-x y^{2}}\left(-x y^{2}+z^{2}\right)=x z^{2}+y z \rightarrow_{G_{1}} 0
$$

- Set $G_{2}=G_{1}$ and $S_{2}=S_{1}-\left\{S\left(g_{1}, g_{2}\right)\right\}=\left\{S\left(g_{2}, g_{3}\right)\right\}$.
- $S_{2} \neq \emptyset$. Reduce $S\left(g_{2}, g_{3}\right)$ with respect to $G_{2}: S\left(g_{2}, g_{3}\right)=$

$$
\frac{x y^{2} z}{x z}(x z+y)-\frac{x y^{2} z}{-x y^{2}}\left(-x y^{2}+z^{2}\right)=y^{3}+z^{3} \rightarrow_{G_{2}} y^{3}+z^{3} \neq 0
$$

Buchberger's Algorithm

Let $I=<x^{2} y+z, x z+y>$ be an ideal in $\mathbb{R}[x, y, z]$. Let $<_{\text {deglex }}$ be the degree lexicographic monomial order in $\mathbb{R}[x, y, z]$ with $x>y>z$.

- Set $G_{0}=\left\{g_{1}=x^{2} y+z, g_{2}=x z+y\right\}$ and $S_{0}=\left\{S\left(g_{1}, g_{2}\right)\right\}$
- $S_{0} \neq \emptyset$. Reduce $S\left(g_{1}, g_{2}\right)$ with respect to $G_{0}: S\left(g_{1}, g_{2}\right)=$

$$
\frac{x^{2} y z}{x^{2} y}\left(x^{2} y+z\right)-\frac{x^{2} y z}{x z}(x z+y)=-x y^{2}+z^{2} \rightarrow_{G_{0}}-x y^{2}+z^{2} \neq 0
$$

- Set $G_{1}=\left\{g_{1}, g_{2}, g_{3}=-x y^{2}+z^{2}\right\}$ and

$$
S_{1}=\left(S_{0}-\left\{S\left(g_{1}, g_{2}\right)\right\}\right) \cup\left\{S\left(g_{1}, g_{3}\right), S\left(g_{2}, g_{3}\right)\right\}
$$

- $S_{1} \neq \emptyset$. Reduce $S\left(g_{1}, g_{3}\right)$ with respect to G_{1} :

$$
S\left(g_{1}, g_{3}\right)=\frac{x^{2} y^{2}}{x^{2} y}\left(x^{2} y+z\right)-\frac{x^{2} y^{2}}{-x y^{2}}\left(-x y^{2}+z^{2}\right)=x z^{2}+y z \rightarrow_{G_{1}} 0
$$

- Set $G_{2}=G_{1}$ and $S_{2}=S_{1}-\left\{S\left(g_{1}, g_{2}\right)\right\}=\left\{S\left(g_{2}, g_{3}\right)\right\}$.
- $S_{2} \neq \emptyset$. Reduce $S\left(g_{2}, g_{3}\right)$ with respect to $G_{2}: S\left(g_{2}, g_{3}\right)=$

$$
\frac{x y^{2} z}{x z}(x z+y)-\frac{x y^{2} z}{-x y^{2}}\left(-x y^{2}+z^{2}\right)=y^{3}+z^{3} \rightarrow G_{2} y^{3}+z^{3} \neq 0
$$

- Set $G_{3}=\left\{g_{1}, g_{2}, g_{3}, g_{4}=y^{3}+z^{3}\right\}$ and $S_{3}=\left(S_{2}-\left\{S\left(g_{2}, g_{3}\right)\right\}\right) \cup\left\{S\left(g_{1}, g_{4}\right), S\left(g_{2}, g_{4}\right), S\left(g_{3}, g_{4}\right)\right\}=$ $\left\{S\left(g_{1}, g_{4}\right), S\left(g_{2}, g_{4}\right), S\left(g_{3}, g_{4}\right)\right\}$.

Buchberger's Algorithm

$$
\begin{aligned}
& S\left(g_{1}, g_{4}\right) \rightarrow G_{3} 0, \\
& S\left(g_{2}, g_{4}\right) \rightarrow_{G_{3}} 0, \\
& S\left(g_{3}, g_{4}\right) \rightarrow_{G_{3}} 0 .
\end{aligned}
$$

So after three more steps $S=\emptyset$ and therefore

$$
\left\{g_{1}, g_{2}, g_{3}, g_{4}\right\}
$$

is a Gröbner basis for I.

Gröbner bases

For any nonzero ideal I and for any monomial order there exist Gröbner bases for I. Actually there exist infinitely many.

Definition

A Gröbner basis $G=\left\{g_{1}, \ldots, g_{t}\right\}$ is called a reduced Gröbner basis for $/$ if

- the initial coefficient of g_{i} is equal to 1 for all $i \in\{1, \ldots, t\}$ and
- no monomial in g_{i} is divisible by any $i n_{<}\left(g_{j}\right)$ for any $j \neq i$.

Theorem

Let $<$ be a monomial order on $k\left[x_{1}, \ldots, x_{n}\right]$ and I_{A} a toric ideal. Then $\left\{x^{u_{1}+}-x^{u_{1}-}, x^{u_{2}{ }^{+}}-x^{u_{2}-}, \cdots, x^{u_{s}^{+}}-x^{u_{s}-}\right\}$ is reduced Gröbner basis with respect to the monomial order < if and only if $x^{u_{1}{ }^{+}}, x^{u_{2}{ }^{+}}, \cdots, x^{u_{s}{ }^{+}}$are the minimal monomial generators of in $n_{<}\left(I_{A}\right)$ and $x^{u_{1}-}, x^{u_{2}-}, \cdots, x^{u_{s}^{-}}$are standard monomials.

Reduced Gröbner bases

Theorem

(Buchberger) Let < be a monomial order on $k\left[x_{1}, \ldots, x_{n}\right]$ and I a nonzero ideal. Then I has a unique reduced Gröbner basis with respect to the monomial order $<$.

Elimination order

We consider two sets of variables x_{1}, \cdots, x_{n} and y_{1}, \cdots, y_{m}. Let $<_{x}$ be any monomial order on the x variables and let $<_{y}$ any monomial order on the y variables. We can define a new monomial order:

Definition

Let x^{a}, x^{b} be monomials in the x variables and y^{c}, y^{d} be monomials in the y variables. We define

$$
x^{a} y^{c}<x^{b} y^{d}
$$

if and only if $x^{a}<_{x} x^{b}$ or $x^{a}=x^{b}$ and $y^{c}<_{y} y^{d}$.
The new monomial order is called an elimination order with the x variables larger than the y variables.

If the $<_{x}$ monomial order is defined by a matrix A and the $<_{y}$ monomial order is defined by a matrix B then the elimination order is defined by the matrix

$$
\left(\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right) .
$$

Elimination

Theorem

Let I be a nonzero ideal of $K\left[x_{1}, \cdots, x_{n}, y_{1}, \cdots, y_{m}\right]$ and let $<$ be an elimination order with the x variables larger than the y variables. Let $G=\left\{g_{1}, g_{2}, \cdots, g_{t}\right\}$ be a Gröbner basis for I. Then $G \cap K\left[y_{1}, \cdots, y_{m}\right]$ is a Gröbner basis for the ideal $I \cap K\left[y_{1}, \cdots, y_{m}\right]$.

Universal Gröbner bases

Although $k\left[x_{1}, \ldots, x_{n}\right]$, for $n \geq 2$ has infinitely many different monomial orders for a fixed nonzero ideal / there exist finitely many different reduced Gröbner bases for I.

Definition

The universal Gröbner basis of an ideal I is the union of all reduced Gröbner bases $G_{<}$of the ideal I as < runs over all monomial orders and is denoted by $\operatorname{UGB}(I)$.

The universal Gröbner basis is a finite subset of I and it is a Gröbner basis for I with respect to all monomial orders simultaneously.

Theorem

(V. Weispfenning and N. Schwartz) Universal Gröbner basis exists for every ideal in $k\left[x_{1}, \ldots, x_{n}\right]$.

Gröbner bases of toric ideals

- Toric ideals are binomial ideals
- Let $f=x^{u^{+}}-x^{u^{-}}, g=x^{v^{+}}-x^{v^{-}}$be two non-zero binomials in $k\left[x_{1}, \ldots, x_{n}\right]$ with $x^{v^{+}}>x^{v^{-}}$and such that $x^{v^{+}} \mid x^{u^{+}}$. Then the remainder of the division is zero or a binomial.

$$
f \rightarrow_{g} h=\left(x^{u^{+}}-x^{u^{-}}\right)-\frac{x^{u^{+}}}{x^{v^{+}}}\left(x^{v^{+}}-x^{v^{-}}\right)=\frac{x^{u^{+}}}{x^{v^{+}}} x^{v^{-}}-x^{u^{-}} .
$$

- Let $f=x^{u^{+}}-x^{u^{-}}, g=x^{v^{+}}-x^{v^{-}}$be two non-zero binomials in $k\left[x_{1}, \ldots, x_{n}\right]$ with $x^{u^{+}}>x^{u^{-}}, x^{v^{+}}>x^{v^{-}}$. Let $L=\operatorname{LCM}\left(x^{u^{+}}, x^{v^{+}}\right)$. The polynomial

$$
S(f, g)=\frac{L}{x^{u^{+}}}\left(x^{u^{+}}-x^{u^{-}}\right)-\frac{L}{x^{v^{+}}}\left(x^{v^{+}}-x^{v^{-}}\right)=\frac{L}{x^{v^{+}}} x^{v^{-}}-\frac{L}{x^{u^{+}}} x^{u^{-}}
$$

is the S-polynomial of f and g and it is binomial.

- Any reduced Gröbner basis of a toric ideal consists of binomials.

Universal Gröbner bases

Any reduced Gröbner basis of a toric ideal consists of binomials. What kind of binomials?

Theorem (B. Sturmfels)
For any toric ideal I_{A} we have that the Universal Gröbner basis is a subset of the Graver basis.

Universal Gröbner bases

Any reduced Gröbner basis of a toric ideal consists of binomials. What kind of binomials?

Theorem (B. Sturmfels)
For any toric ideal I_{A} we have that the Universal Gröbner basis is a subset of the Graver basis.

Proof.

Suppose that there exists a binomial $x^{u^{+}}-x^{u^{-}}$in the Universal Gröbner basis which does not belong to the Graver. Then
(1) there exists a monomial order < such that $x^{u^{+}}-x^{u^{-}}$is in the reduced Gröbner basis with respect to the monomial order $>$ and
(2) there exists a non-zero $x^{\nu^{+}}-x^{v^{-}} \in I_{A}$, with $x^{v^{+}}-x^{v^{-}} \neq x^{u^{+}}-x^{u^{-}}$such that $x^{v^{+}} \mid x^{u^{+}}$and $x^{v^{-}} \mid x^{u^{-}}$.
The first condition means that $x^{u^{+}}$is a minimal generator of $i n_{<}\left(I_{A}\right)$ and $x^{u^{-}}$is a standard monomial.

Proof.

Suppose that there exists a binomial $x^{u^{+}}-x^{u^{-}}$in the Universal Gröbner basis which does not belong to the Graver. Then
(1) there exists a monomial order < such that $x^{u^{+}}-x^{u^{-}}$is in the reduced Gröbner basis with respect to the monomial order $>$ and
 $x^{v^{+}}-x^{v^{-}} \neq x^{u^{+}}-x^{u^{-}}$such that $x^{v^{+}} \mid x^{u^{+}}$and $x^{v^{-}} \mid x^{u^{-}}$.
The first condition means that $x^{u^{+}}$is a minimal generator of $i n_{<}\left(I_{A}\right)$ and $x^{u^{-}}$is a standard monomial.
For $x^{v^{+}}-x^{v^{-}} \in I_{A}$ there are two cases:
(1) $x^{v^{+}}>x^{v^{-}}$implies $x^{v^{+}} \in i n_{<}\left(I_{A}\right)$ and divides one of the minimal generators of $i n_{<}\left(I_{A}\right)$, the $x^{u^{+}}$. Therefore $x^{v^{+}}=x^{u^{+}}$. But then $\left(x^{v^{+}}-x^{v^{-}}\right)-\left(x^{u^{+}}-x^{u^{-}}\right)=x^{u^{-}}-x^{v^{-}} \in I_{A}$ is non-zero and $x^{u^{-}}>x^{v^{-}}$(since $\left.x^{v^{-}} \mid x^{u^{-}}\right)$. Therefore $x^{u^{-}} \in i n_{<}\left(I_{A}\right)$. A contradiction since $x^{u^{-}}$is a standard monomial.
(2) $x^{v^{-}}>x^{v^{+}}$then $x^{v^{-}} \in i n_{<}\left(I_{A}\right)$ and divides a standard monomial, the $x^{u^{-}}$. Contradiction.

