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Many-valued logics

non-classical

truth functional

truth value {0, 1} ⊆W ⊆ [0, 1]

truth is a matter of degree (P. Hájek)

originated from the papers of  Lukasiewicz and Post in the twenties



Logic Classical logic

Truth values L2 = {0, 1}



 Lukasiewicz logic

Logic ∞-valued n-valued
 Lukasiewicz logic L∞  Lukasiewicz logic Ln

Truth values [0, 1] Ln = {0, 1
n−1 ,

2
n−1 , . . . ,

n−2
n−1 , 1}
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”I should like to state only one thing, namely that determinism is not a
view better justified than indeterminism.”

J.  Lukasiewicz, On determinism, 1946



 Lukasiewicz logic

Logic ∞-valued n-valued
 Lukasiewicz logic L∞  Lukasiewicz logic Ln

Truth values [0, 1] Ln = {0, 1
n−1 ,

2
n−1 , . . . ,

n−2
n−1 , 1}

 Lukasiewicz connectives on Ln and [0, 1]

¬p := 1− p and p → q := min(1− p + q, 1)

Derived connectives

p ∨ q = max(p, q) = (p → q)→ q,
p ∧ q = min(p, q) = ¬(¬p ∨ ¬q)



∞-valued  Lukasiewicz logic L∞:

Connectives: {¬,→}

Axioms
1 ϕ→ (ψ → ϕ);

2 (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ));

3 ((ϕ→ ψ)→ ψ)→ ((ψ → ϕ)→ ϕ);

4 (¬ψ → ¬ϕ)→ (ϕ→ ψ).

L2 = L∞ + ((ϕ→ ¬ϕ)→ ¬ϕ)

Ln = L∞ + Axn + {Axk | k ∈ {2, . . . , (n − 2)}, k 6 | (n − 1)}

Deduction rule: {ϕ, ϕ→ ψ} ` ψ



Logic and Algebra

LT-algebra

Classical logic
` ϕ iff |=L2 ϕ

The free algebra
LT = Form/ ∼

ϕ ∼ ψ iff ` ϕ↔ ψ

Boolean algebras
Variety

generated by L2
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The Algebra of Logic

Gr.C. Moisil, 1940: 3-valued and 4-valued  Lukasiewicz algebras

Gr.C. Moisil, 1941:n-valued  Lukasiewicz algebras

Moisil’s definition:
an element is uniquely characterized by

a sequence of Boolean nuances
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Gr.C. Moisil, 1941:n-valued  Lukasiewicz algebras

Moisil’s definition:
an element is uniquely characterized by

a sequence of Boolean nuances

C.C. Chang, 1958: MV-algebras,
the algebraic structures corresponding to L∞

Chang’s definition
is inspired by the theory of lattice-ordered groups
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Logic and Algebra

LT-algebra

 Lukasiewicz logic
` ϕ iff |=L ϕ

The free algebra
LT = Form/ ∼

ϕ ∼ ψ iff ` ϕ↔ ψ

MV - algebras
Variety

generated by [0, 1]



Lukasiewicz ∞-valued logic

L
The connectives are {→,¬}

The axioms:

1 ϕ→ (ψ → ϕ)

2 (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ))

3 ((ϕ→ ψ)→ ψ)→ ((ψ → ϕ)→ ϕ)

4 (¬ψ → ¬ϕ)→ (ϕ→ ψ)

The deduction rule is modus ponens.

Truth values: [0,1]

x → y = min(1− x + y , 1),
¬x = 1− x

L+ (¬ϕ→ ϕ)→ ϕ = CL

J.  Lukasiewicz, A. Tarski, 1930

Completeness. TFAE:

ϕ is provable,

e(ϕ) = 1 for any [0,1]-evaluation e.

A. Rose, J.B. Rosser, 1958



Lukasiewicz ∞-valued logic

L
The connectives are {→,¬}

The axioms:

1 ϕ→ (ψ → ϕ)

2 (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ))

3 ((ϕ→ ψ)→ ψ)→ ((ψ → ϕ)→ ϕ)

4 (¬ψ → ¬ϕ)→ (ϕ→ ψ)

The deduction rule is modus ponens.

Truth values: [0,1]

x → y = min(1− x + y , 1),
¬x = 1− x

L+ (¬ϕ→ ϕ)→ ϕ = CL

J.  Lukasiewicz, A. Tarski, 1930

Completeness. TFAE:

ϕ is provable,

e(ϕ) = 1 for any [0,1]-evaluation e.

A. Rose, J.B. Rosser, 1958



Lukasiewicz ∞-valued logic

L
The connectives are {→,¬}

The axioms:

1 ϕ→ (ψ → ϕ)

2 (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ))

3 ((ϕ→ ψ)→ ψ)→ ((ψ → ϕ)→ ϕ)

4 (¬ψ → ¬ϕ)→ (ϕ→ ψ)

The deduction rule is modus ponens.

Truth values: [0,1]

x → y = min(1− x + y , 1),
¬x = 1− x

L+ (¬ϕ→ ϕ)→ ϕ = CL

J.  Lukasiewicz, A. Tarski, 1930

Completeness. TFAE:

ϕ is provable,

e(ϕ) = 1 for any [0,1]-evaluation e.

A. Rose, J.B. Rosser, 1958



Lukasiewicz ∞-valued logic

L
The connectives are {→,¬}

The axioms:

1 ϕ→ (ψ → ϕ)

2 (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ))

3 ((ϕ→ ψ)→ ψ)→ ((ψ → ϕ)→ ϕ)

4 (¬ψ → ¬ϕ)→ (ϕ→ ψ)

The deduction rule is modus ponens.

Truth values: [0,1]

x → y = min(1− x + y , 1),
¬x = 1− x

L+ (¬ϕ→ ϕ)→ ϕ = CL

J.  Lukasiewicz, A. Tarski, 1930

Completeness. TFAE:

ϕ is provable,

e(ϕ) = 1 for any [0,1]-evaluation e.

A. Rose, J.B. Rosser, 1958



The algebra of  Lukasiewicz logic

MV-algebra: (A,⊕,∗ , 0A)

1 (A,⊕, 0A) abelian monoid,

2 (x∗)∗ = x ,

3 (x∗ ⊕ y)∗ ⊕ y = (y∗ ⊕ x)∗ ⊕ x ,

4 0∗A ⊕ x = 0∗A.

for any x , y ∈ A.

C.C. Chang, 1958

Derived operations:

1A = 0∗A,
x � y = (x∗ ⊕ y∗)∗,
x → y = x∗ ⊕ y

Boolean algebra=

MV-algebra s.t. x ⊕ x = x

(A,∨,∧, 0A, 1A) is a bounded distributive lattice

x ∨ y = (y∗ ⊕ x)∗ ⊕ x , x ∧ y = (x∗ ∨ y∗)∗ for any x , y ∈ A

The implication: x → y = 1A iff x ≤ y
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MV-algebras

Standard model:
([0, 1],⊕,∗ , 0)

x ⊕ y = min(x + y , 1),
x∗ = 1− x

Chang’s completeness
theorem: MV=HSP([0,1])

C.C.Chang, 1959

Chang’s representation theorem

Any MV-algebra is a subdirect product of linearly ordered MV-algebras.

C.C.Chang, 1959
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MV-algebras

(G ,+, 0,≤) is a lattice-ordered group (`-group) if
(G ,+, 0) group, (G ,≤) lattice,
x ≤ y implies x + z ≤ y + z for any x , y , z ∈ G .

u ∈ G is a strong unit: u ≥ 0, for any x ∈ G there is n ≥ 1 s.t. x ≤ nu.

- G
0 u

([0, u]G ,⊕,∗ , 0) MV-algebra for any (G , u) ab. `u - group

x ⊕ y = (x + y) ∧ u, x∗ = u − x for any x , y ∈ G .

Categorical equivalence

The category of MV-algebras is equivalent with the category of abelian
`-groups with strong unit with unit preserving homomorphism.
D. Mundici, 1986
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Examples

[0, 1]X , ∗[0, 1]X where X is a set

C (X ) = {f : X → [0, 1] | f continuous}
where (X , τ) topological space

[(0, 0), (1, 0)]Z×lexG where G is an `-group
[((0, 0), 0), ((1, 0), 0)](Z×lexZ)×lexG whereG is an `-group

0 c 2c 11-c1-2c
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Examples

[0, 1]X , ∗[0, 1]X where X is a set

C (X ) = {f : X → [0, 1] | f continuous}
where (X , τ) topological space
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0 c 2c 11-c1-2c

Non-semisimple MV-algebra = algebra with infinitesimals



Functional representation
A MV-algebra, ∅ 6= I ⊆ A is an ideal if:
(x ∈ I , y ≤ x ⇒ y ∈ I ) and (x , y ∈ I ⇒ x ⊕ y ∈ I )
for any MV-algebra A, the maximal ideal space MaxA with the
spectral topology is a compact Hausdorff space
(open sets: r(I ) = {M ∈ MaxA | I 6⊆ M} for some ideal I ).
A is semisimple if

⋂
{M | M ∈ Max(A)} = ∅

C (MaxA) = {f : MaxA→ [0, 1] | f continuous}

L.P.Belluce, 1986

Any semisimple MV-algebra A is isomorphic with a separating
MV-subalgebra of C (MaxA) (with pointwise operations).

ι : A→ C (MaxA) embedding
∀ M1 6= M2 ∃ f ∈ ι(A) (f (M1) = 0 and f (M2) 6= 0)

A. Di Nola, S.Sessa, 1995

A σ-complete ⇒ MaxA basically disconnected

A complete ⇒ MaxA extremally disconnected
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Semantical and sintactical consequences in L

For a set Θ of formulas, define
Θ` = sintactic consequences of Θ
Θ|= = semantic consequences of Θ

Theorem

TFAE:

Θ` = Θ|=

L(Θ) (the Lindenbaum-Tarski algebra of Θ) is semisimple.

R. Cignoli, I.M.L. D’Ottaviano, D. Mundici, Algebraic foundations of
many-valued reasoning, 2000.

P. Hájek, Metamathematics of fuzzy logic, 1998.
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Di Nola’s representation theorem, 1991

Theorem

Up to isomorphism, every MV-algebra A is an algebra of [0, 1]∗-valued
functions over some set, where [0, 1]? is an ultrapower of [0, 1], only
depending on th cardinatlity of A.

[0, 1]? is the unit interval of R? (non-standard reals)



Logic and games

Answerer: chooses a number x ∈ S

Questioner: asks Yes/No questions

Answerer: Yes/No

The Answerer is allowed to lie at most p times.

Theorem

If α is a formula L∞ t.f.a.e.:

`L∞ α ,

e(α) = 1 for any S , p ≥ 0 and e : Form(L)→ K (S , p) valuation,
where K (S , p) is an MV-algebra defined by Ulam game with a finite
searching spaces S and p lies.

Mundici, 1991
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MV-algebras are twofold structures

generalization of Boolean algebras

intervals in abelian lattice ordered groups with strong unit

The theory of MV-algebras is a possible answer to Birkhoff’s problem:
develop a common abstraction which includes Boolean algebras and
lattice-ordered groups as special cases.

G. Birkhoff, Lattice Theory, 1973.



Fuzzy Sets

L.A. Zadeh, 1965

Clearly, the ”class of all real numbers that are much greater then 1”, or
”the class of beautiful women”, or ”the class of tall men” do not
constitute classes or sets in the usual mathematical sense of these terms.
Yet, the fact remains that such ”imprecisely” defines classes play an
important role in human thinking, particularly in the domains of pattern
recognition, communication of information and abstraction.
· · ·
The concept in question is that of a fuzzy set, that is, a ”class” with a
continuum of grades of membership.

A fuzzy subset of a set X is a function

χ : X → [0, 1].



Fuzzy Logic

L.A. Zadeh, 2004

In many-valued logic, ML, truth is a matter of degree,

In Fuzzy logic, FL:
I everything is, or it is allowed to be, partial, i.e., a matter of degree,
I everything is, or it is allowed to be, imprecise (approximate), linguistic,

perception based.

A source of confusion is that the label ”fuzzy logic” is used in two
different senses:

I narrow sense: fuzzy logic is a logical system,
I wide sense: fuzzy logic is coextensive with fuzzy set theory.



”FL in narrow sense”

P. Hájek, Metamathematics of Fuzzy Logic, Kluwer, 1998

Fuzzy logic is the logic the continuous t-norms on [0, 1].

A t-norm is an operation ∗ : [0, 1]2 → [0, 1] with the following properties:

∗ is commutative, associative, monotone

1 ∗ x = x şi 0 ∗ x = 0 for any x ∈ [0, 1].

The most important continuous t-norms are:

x ∗ y = max(0, x + y − 1) ( Lukasiewicz),
x ∗ y = min(x , y) (Gödel),
x ∗ y = x · y (product)



 Lukasiewicz logic with product



 Lukasiewicz logic with product

The product in  Lukasiewicz logic

[0, 1] is closed to the real product.

internal product: ([0, 1], ·,⊕,∗ , 0)

A. Di Nola, A. Dvurečenskij, 2001, F. Montagna 2000: PMV-algebras

external product: ([0, 1],⊕,∗ , {r |r ∈ [0, 1]}, 0)

A. Di Nola, I. L., 2012: Riesz MV-algebras

internal and external product: ([0, 1], ·,⊕,∗ , {r |r ∈ [0, 1]}, 0)

S. Lapenta, I. L., 2015: fMV-algebras



Inspiration: lattice-ordered structures

(G ,+, 0) group,
(G ,+, 0,≤) (G ,≤) lattice,
`-group x ≤ y implies x + z ≤ y + z

(V ,+, 0,≤) abelian `-group
(V ,+, {r|r ∈ R}, 0,≤) (V ,+, {r|r ∈ R}, 0) real vector space

Riesz space x ≤ y implies r · x ≤ r · y for r ≥ 0

(R,+, 0,≤) abelian `-group,
(R,+, ·, 0,≤) (R,+, ·, 0) ring

`-ring x ≤ y implies x · z ≤ y · z and
z · x ≤ z · y for z ≥ 0

(A,+, ·, 0,≤) `-ring
(A,+, ·, {r|r ∈ R}, 0,≤) (A,+, {r|r ∈ R}, 0,≤) Riesz space

`-algebra r(x · y) = (rx) · y = x · (ry)

f -ring (f -algebra) = subdirect product of chains



MV-algebras are intervals in `u-groups

MV-algebra: (A,⊕,∗ , 0A)

1 (A,⊕, 0A) abelian monoid,

2 (x∗)∗ = x ,

3 (x∗ ⊕ y)∗ ⊕ y = (y∗ ⊕ x)∗ ⊕ x ,

4 0∗A ⊕ x = 0∗A.

for any x , y ∈ A.

([0, u]G ,⊕,∗ , 0) MV-algebra for any (G , u) ab. `u - group

x ⊕ y = (x + y) ∧ u, x∗ = u − x for any x , y ∈ G .



What linearity means in the theory of MV-algebras?

Intuition:

If A = [0, u]G then x ⊕A y = x +G y iff x � y = 0 iff x ≤ y∗.

ω : A→ B function, A and B are MV-algebras

TFAE:

x � y = 0 implies ω(x)� ω(y) = 0 and ω(x ⊕ y) = ω(x)⊕ ω(y),

the following properties hold for any x , y ∈ A:
(l1) x ≤ y implies ω(x) ≤ ω(y),
(l2) ω(x � (x ∧ y)∗) = ω(x)� ω(x ∧ y)∗.

Definition

ω is linear if it satisfies the above properties.

β : A× B → C is bilinear if it is linear in each argument.
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Overview on  Lukasiewicz logic with product

Algebra `-structure

MV-algebras `-groups HSP([0, 1])

Riesz Riesz HSP([0, 1])
MV-algebras spaces

Product f -rings HSP([0, 1])
MV-algebras

f MV-algebras f -algebras HSP([0, 1])

HSP([0, 1]) is a proper subvariety



Riesz MV-algebras

Riesz MV-algebra (A,⊕,∗ , {r | r ∈ [0, 1]}, 0A)

1 (A,⊕,∗ , 0A) is an MV-algebra,

2 r(x � y∗) = (rx)� (ry)∗,

3 (r � q∗) · x = (rx)� (qx)∗,

4 r(qx) = (rq)x ,

5 1x = x ,

r , q ∈ [0, 1] and x , y ∈ A, where x � y = (x∗ ⊕ y∗)∗.

in: A. Di Nola, I.L., 2011, 2014, A. Di Nola, S.Lapenta, I.L., 2018



f MV-algebras

f MV-algebra (A,⊕, ·,∗ , {r | r ∈ [0, 1]}, 0A)

1 (A,⊕,∗ , {r | r ∈ [0, 1]}, 0A) is a Riesz MV-algebra

2 z · (x � (x ∧ y)∗) = (z · x)� (z · (x ∧ y))∗

3 (x � (x ∧ y)∗) · z = (x · z)� ((x ∧ y) · z)∗

4 x · (y · z) = (x · y) · z
5 (z · (x � y∗)) ∧ (y � x∗) = 0A
6 ((x � y∗) · z) ∧ (y � x∗) = 0A
7 r(x · y) = (rx) · y = x · (ry)

r ∈ [0, 1], and x , y , z ∈ A where x � y = (x∗ ⊕ y∗)∗.

in: S.Lapenta, I.L., 2016



A unifying framework
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PROBLEM: find adjunctions and close the diagrams



A unifying framework
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PROBLEM: find adjunctions and close the diagrams
SOLUTION: for semisimple stuctures,

using the MV-algebraic tensor product



One diagram ... ”to rule them all”
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S. Lapenta, I.L., 2015, 2016


