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MV-algebras with product

Category MV-algebras unital Standard
with product `-structures model

MV MV-algebras `-groups HSP([0, 1])

RMV Riesz Riesz HSP([0, 1])
MV-algebras spaces

PMV Product f -rings PMV+ =ISP([0, 1])
MV-algebras

fMV f MV-algebras f -algebras f MV+ = ISP([0, 1])



MV-algebras with product

Logic MV-algebras unital Standard
with product `-structures model

L∞ MV-algebras `-groups HSP([0, 1])

RL Riesz Riesz HSP([0, 1])
MV-algebras spaces

PL Product f -rings PMV+ =ISP([0, 1])
MV-algebras

f L f MV-algebras f -algebras f MV+ = ISP([0, 1])



A. Di Nola, I.L., 2011, 2014

Riesz MV-algebra (A,⊕,∗ , {r | r ∈ [0, 1]}, 0A)
1 (R,⊕,∗ , 0A) is an MV-algebra,
2 r(x � y∗) = (rx)� (ry)∗,
3 (r � q∗) · x = (rx)� (qx)∗,
4 r(qx) = (rq)x ,
5 1x = x ,

r , q ∈ [0, 1] and x , y ∈ A, where x � y = (x∗ ⊕ y∗)∗.

Riesz MV-algebras and Riesz spaces
For any Riesz MV-algebra A there is al Riesz space with strong unit
(V , u) such that A ' [0, u]V .
The category of Riesz MV-algebras is equivalent with the category of
Riesz spaces with strong unit.



The logic RL

The connectives are {→,¬} ∪ {σr | r ∈ [0, 1]}
The axioms:

1 the axioms of L
2 σr (ϕ→ ψ)↔ (σrϕ→ σrψ)
3 σ(r�q∗)ϕ↔ (σqϕ→ σrϕ)
4 σrσqϕ↔ σ(rq)ϕ

5 σ1ϕ↔ ϕ,
where ϕ, ψ, χ are formulas and r , q ∈ [0, 1].
The deduction rule is modus ponens.

Theorem
The Lindenbaum-Tarski algebra is a Riesz MV-algebra.



The logic RL

Completeness. TFAE:
ϕ is provable,
e(ϕ) = 1 for any [0, 1]-evaluation.

Theorem
RMV=HSP([0,1])

For r ∈ [0, 1] we set r := ¬(σr (¬θ)) where ` θ

Pavelka completeness
If ϕ is a formula of RL , we define:

the truth degree of ϕ, by
‖ ϕ ‖= min{e(ϕ) | e is an evaluation},
the provability degree of ϕ, by
| ϕ |= max{r ∈ [0, 1] | ` r→ ϕ},

then | ϕ |=‖ ϕ ‖ .



The logic RL

Completeness. TFAE:
ϕ is provable,
e(ϕ) = 1 for any [0, 1]-evaluation.

Theorem
RMV=HSP([0,1])

For r ∈ [0, 1] we set r := ¬(σr (¬θ)) where ` θ

Pavelka completeness
If ϕ is a formula of RL , we define:

the truth degree of ϕ, by
‖ ϕ ‖= min{e(ϕ) | e is an evaluation},
the provability degree of ϕ, by
| ϕ |= max{r ∈ [0, 1] | ` r→ ϕ},

then | ϕ |=‖ ϕ ‖ .



Normal form theorems

ϕ formula with n variables 7→ fϕ : [0, 1]n → [0, 1]

A function f : [0, 1]n → [0, 1] is a PWLu(Z) function if it is continuous
and there is a finite set of affine functions p1, . . . , pk : Rn → R with
integer coefficients such that for any (a1, . . . , an) ∈ [0, 1]n there exists
i ∈ {1, . . . , k} with f (a1, . . . , an) = pi (a1, . . . , an).

Free MV-algebra MVn ' LindL,n [R. McNaughton, 1951]
FreeMV (n) = {fϕ : [0, 1]n → [0, 1] | ϕ formula of L}=PWLu(Z)

Free Riesz MV-algebra RMVn ' LindRL,n

FreeRMV (n) = {fϕ : [0, 1]n → [0, 1] | ϕ formula of RL}=PWLu(R)
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Overview

Riesz MV-algebras are a variety,
Riesz MV-algebras have a simple axiomatization,
the logic RL is ”classically” developed,
the logic RL has standard completeness and normal-form theorem,
Riesz MV-algebras categorically equivalent with Riesz spaces with
strong unit.

... most of the standard real function spaces are vector lattices, and in a
very natural way.

G. Birkhoff, Lattice Theory, 1973
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Banach lattices: M-spaces, L-space

A Banach lattice (R, ‖·‖) is an

M-space: ‖x ∨ y‖ = ‖x‖ ∨ ‖y‖ whenever x , y ≥ 0
L-space: ‖x + y‖ = ‖x‖+ ‖y‖ whenever x , y ≥ 0

Examples
C(X ,R) is an M-space for any compact Hausdorff space X .
L1(µ) is an L-space for any measure space (X ,Ω, µ).

Kakutani’s theorems
For any M-space with strong unit (M, u) there exists a compact
Hausdorff space X such that (M, u) is isometrically Riesz isomorphic
with C(X ,R).
For any L-space with strong unit (L, u) there exists a measure space
(X ,Ω, µ) such that L is isometrically Riesz isomorphic with L1(µ).



Unit intervals in M-spaces

On any semisimple Riesz MV-algebra A define

‖x‖u = inf {r ∈ [0, 1] | x ≤ r · 1} for any x ∈ A (unit norm)

Note that ‖x ∨ y‖u = ‖x‖u ∨ ‖y‖u for any x ,y ∈ A.
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Norm-complete Riesz MV-algebras and M-spaces
Any Riesz MV-algebra which is norm-complete w.r.t ‖·‖u is isomorphic
with the unit interval of an M-space with strong unit.

The category of Riesz MV-algebras which are norm-complete w.r.t ‖·‖u is
equivalent with the category of unital M-spaces with Riesz
homomorphisms.
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with Riesz MV-algebra homomorphisms is:
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continuous functions,
equivalent with the category of C∗-algebras.

I.L.: similar results for L-spaces



Logic and analysis

RL the logic of Riesz MV-algebras
[ϕ] in LindRL,n

‖[ϕ]‖u = sup{fϕ(x)|x ∈ [0, 1]n}
(LindRL,n, ‖ · ‖u) is a normed space

Norm-completion of the Lindenbaum-Tarski algebra
The norm-completion of the normed space (LindRL,n, ‖ · ‖u) is
isometrically isomorphic with (C([0, 1]n), ‖ · ‖∞).

Approximation of continuous functions
For any continuous function f : [0, 1]n → [0, 1] there exists a sequence of
formulas (ϕn)n of RL such that limn fϕn = f .



Logic and analysis

For r ∈ [0, 1] we set r := ¬(σr (¬θ)) where ` θ

Uniform limit (inspired by [X. Caicedo, LATD’08])
A formula ϕ is the uniform limit of the sequence (ϕn)n in RL if
for any r < 1 there is k such that for any n ≥ k: ` r→ (ϕ↔ ϕn).
We write limn ϕn = ϕ.

Theorem. TFAE:
limn ϕn = ϕ,
limn fϕn = fϕ (uniform convergence),
there exists an increasing sequence (rn)n in [0, 1] such that

∨
n rn = 1

and ` ηrn → (ϕ↔ ϕn) for any n
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The logic QL

QL
The language is {→,¬} ∪ {σr | r ∈ [0, 1] ∩Q}
The axioms are similar with the ones of RL.
Completeness w.r.t. [0, 1] ∩Q.

Rational  Lukasiewicz logic [B. Gerla, 2001]
The language is {→,¬} ∪ {δn | n ∈ N}
I. the axioms of  L:
II. the following formulas are axioms for any n ≥ 2:
ϕ↔ nδnϕ
(ϕ→ nψ)→ (δnϕ→ ψ)

QL and Rational  Lukasiewicz logic are equivalent.
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The logic QL

QL
The language is {→,¬} ∪ {σr | r ∈ [0, 1] ∩Q}
The axioms are similar with the ones of RL.

DMV-algebras
The models of QL are defined as Riesz MV-algebras, but we have only
rational scalars.
They are categorically equivalent with:

divisible MV-algebras,
Q-vector lattices with strong unit

DMV = HSP([0, 1]Q)



Logic and analysis

Formulas as limits
For any formula ϕ of RL there exists a sequence of formulas (ϕn)n of QL
such that limn ϕn = ϕ.

RL∗ is the logic obtained from RL by adding deduction rules

(?) if ϕ = lim
m
ϕm then ϕ1, ϕ2, . . . , ϕm, . . .

ϕ

Limits and deduction
Let ϕ be a formula of RL . There exists a sequence of formulas
Θ = {ϕn}n∈N ⊆ FormQL such that:

limn ϕn = ϕ,
Thm(ϕ,RL∗) = Thm(Θ,RL∗).
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δ-algebras

Marra V. and Reggio L., 2016
They introduce δ-algebra: MV-algebra endowed with an infinitary
operator δ such that, for sequences in C(X ), is

∑
n

fn
2n .

The category of compact Hausdorff spaces is dual to the category of
δ-algebras with δ-preserving MV-algebra morphisms.

Hence, δ-algebras are equivalent to norm-complete Riesz MV-algebras,

In RL : given {ϕn}n we define the sequence σ1 = ∆ 1
2
ϕ1,

σ2 = ∆ 1
2
ϕ1 ⊕∆ 1

22
ϕ2, . . . and we set δ(ϕ1, ϕ2, · · · ) = limnσn.
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The infinitary logic IRL

Language: {→,¬} ∪ {∇r}r∈[0,1] ∪
∨

Axioms: the ones of RL and

(S1) ϕk →
∨

n∈N ϕn, for any k ∈ N

Deduction rules: Modus Ponens and

(SUP) (ϕ1 → ψ), . . . , (ϕk → ψ) . . .∨
n∈N ϕn → ψ

Following Karp C. R., Languages with expressions of infinite length,
North-Holland Pub. Co., 1964
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The infinitary logic IRL

Models are σ-complete Riesz MV-algebras
IRL is complete wrt to all models
LindIRL is the Dedekind σ-completion of LindRL

A logic for quasi-Stonean spaces
Since any σ-complete Riesz MV-algebra is norm-complete (w.r.t. unit
norm), any model of IRL has the form C(X ) where X is quasi-Stonean
(basically disconnected compact Hausdorff space). In particular, LindIRL
has this form.

Riesz tribe
A Riesz tribe over X is a Riesz MV-algebra of [0, 1]-valued functions over
X that are closed under pointwise countable suprema.
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The Loomis-Sikorski theorem for Riesz MV-algebras

Riesz tribe
A Riesz tribe over X is a Riesz MV-algebra of [0, 1]-valued functions over
X that are closed under pointwise countable suprema.

The Loomis-Sikorski Theorem
Let A ⊆ C(X ) be a σ-complete Riesz MV-algebra, where X = Max(A).
Then there exist a Riesz tribe T and a σ-homomorphism of T onto A.

Representation using tribes
LindIRL,n is isomorphic with the Riesz tribe on [0, 1]n generated by the
projection functions.



The infinitary logic IRL

S lomiński J., The theory of abstract algebras with infinitary operations,
Instytut Matematyczny Polskiej Akademi Nauk, Warszawa (1959)

Infinitary variety
The class of Dedekind σ-complete Riesz MV-algebras is the infinitary
variety HSP([0, 1]).

Standard completeness for IRL
If ϕ is a formula of IRL, then `IRL ϕ if and only if e(ϕ) = 1 for any
evaluation e : FORMIRL → [0, 1].
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strong unit,

Riesz MV-algebras are a variety,
Riesz MV-algebras have a simple axiomatization,

the logic RL is ”classically” developed,
the logic RL has standard completeness and normal-form theorem,
formulas as piecewise linear continuous functions,

Riesz MV-algebras provide a framework for studying
I connections between logic, algebra and functional analysis,
I infinitary logic with standard completeness,
I connections with algebraic geometry,

Neural networks as formulas of RL.
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formulas as piecewise linear continuous functions,

Riesz MV-algebras provide a framework for studying
I connections between logic, algebra and functional analysis,
I infinitary logic with standard completeness,
I connections with algebraic geometry,

Neural networks as formulas of RL.



Neural networks as formulas of RL

Multilayer perceptron
A multilayer perceptron with l hidden layers, n inputs and one output can
be represented as a function F : [0, 1]n → [0, 1] such that

F (x1, . . . , xn) = φ
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,

where
φ : R→ [0, 1] is the activation function (monotone-nondecreasing
continuous function)
ωl

ok is the synaptic weight from neuron k in the l-th hidden layer to
the single output neuron o,
ωl−1

kj is the synaptic weight from neuron j in the (l − 1)-th hidden
layer to neuron k in the l-th hidden layer,
and so on for the other synaptic weights.

S. Haykin, Neural Neworks - A Comprehensive Foundation, 1999.



Neural networks as formulas of RL

Let Nn the class of multilayer perceptrons where the activation function is
the piecewise linear function %(x) = max(min(1, x), 0), and the synaptic
weights are real numbers.

Theorem: Nn = FreeRMV (n).
(a) For every l , n, n(2), . . . , n(l) ∈ N, and ωij , bi ∈ R, the function
F : [0, 1]n 7−→ [0, 1] defined as
F (x1, . . . , xn) = %

(∑n(l)
k=1 ωok%

(∑n(l−1)
j=1 ωkj%

(
. . . (

∑n
i=1 ωli xi + bi ) . . .))) ,

belongs to FreeRMV (n).

(b) For any f ∈ FreeRMV (n), there exist l , n, n(2), . . . , n(l) ∈ N, and
ωij , bi ∈ R such that
f (x1, . . . , xn) = %

(∑n(l)
k=1 ωok%

(∑n(l−1)
j=1 ωkj%

(
. . . (

∑n
i=1 ωli xi + bi ) . . .))) .

Di Nola A., B. Gerla, I.L., 2013



Neural networks as formulas of RL

Problem
For f : [0, 1]n → R an affine function, find a formula ϕ of RL such that
fϕ = % ◦ f .

function Formula((r1, i1), . . . , (rm, im))
{
(F1) if rk ≤ 0 for any k ∈ {1, . . . ,m} then return(⊥);
(F2) find k ∈ {1, . . . ,m} such that rk > 0;

if ik = 0 then ψ := rk> else ψ := rkxik ;
(F3) if m = 1 then return(ψ);
(F4) ϕ =Formula((r1, i1), . . . , (rk−1, ik−1), (rk+1, ik+1), . . . , (rm, im)) ;

χ =Formula((−r1, i1), . . . , (−rk−1, ik−1), (−rk+1, ik+1), . . . , (−rm, im)) ;
return((ϕ⊕ ψ)� ¬χ)

}

Di Nola A., B. Gerla, I.L., 2013



Neural networks as formulas of RL

We illustrate how the algorithm works on a simple example.

For f : [0, 1]2 → [0, 1], f (x1, x2) = x2 − 0.3x1 we call the function
function Formula((1, 2), (−0.3, 1))
{
(F2) k = 1, rk = 1, ik = 2; ψ := 1x2;
(F4) ϕ =Formula((−0.3, 1)) ; χ =Formula((0.3, 1)) ;
return((ϕ⊕ ψ)� ¬χ)
}

Denote ⊥ = ¬(ϕ→ ϕ). One can easily see that ϕ = ⊥ and χ = 0.3x1, so
the function returns

(ϕ⊕ ψ)� ¬χ = (⊥⊕ 1x2)� ¬0.3x1

which is logically equivalent with x2 � ¬0.3x1.
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