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Many-valued logics

@ non-classical

truth functional

truth value {0,1} C W C [0, 1]

truth is a matter of degree (P. Hdjek)

originated from the papers of Lukasiewicz and Post in the twenties



Logic ‘ Classical logic

Truth values L, ={0,1}



tukasiewicz logic

Logic oo-valued n-valued
tukasiewicz logic L tukasiewicz logic L,

3

[071] Ln:{07ﬁ7%7---7 —271}

Truth values =1

3>



tukasiewicz logic

Logic oo-valued n-valued
tukasiewicz logic L tukasiewicz logic £,

Truth values [0, 1] L, =0, nil, nfl, e Zj, 1}

"1 should like to state only one thing, namely that determinism is not a
view better justified than indeterminism.”

J. Lukasiewicz, On determinism, 1946




tukasiewicz logic

Logic oo-valued n-valued
tukasiewicz logic L tukasiewicz logic £,

Truth values

[0, 1] L, ={0,-1;,-2,..., =21}

Lukasiewicz connectives on L, and [0, 1]

-p:=1—pand p— qg:=min(l—p+gq,1)

Derived connectives

pV q=max(p,q) = (p—q) = q,
p/Aq=min(p,q) = =(=pV —q)




oo-valued tukasiewicz logic L:

Connectives: {—, —}

Axioms
Q ¢ — (Y— o)
Q@ (¢ =)= ((W—x)—= (p—x))
O ((p—=¢) = 9¢) > ((¥— ¢) = 9)
Q (—¢ = —p) = (p — ).

0 Lo= Lo+ ((¢— ) = )

0 L= Lo+ Asy+ {Axc | k€ {2,... . (n—2)}, kJ(n—1)}

Deduction rule: {p, o — ¥} 9 J




Logic and Algebra

Classical logic
= ) iff |:L2 %2}

LT = Form/ ~
Cl'he free algebra) LT-algebra Y

Boolean algebras
Variety
generated by L,




Logic and Algebra

tukasiewicz logic
Eoiffl= ¢

LT = Form/ ~
Cl'he free aIgebreD LT-algebra QN W iff < 1




The Algebra of Logic

@ Gr.C. Moisil, 1940: 3-valued and 4-valued tukasiewicz algebras
o Gr.C. Moisil, 1941:n-valued tukasiewicz algebras
Moisil’s definition:
an element is uniquely characterized by
a sequence of Boolean nuances




The Algebra of Logic

@ Gr.C. Moisil, 1940: 3-valued and 4-valued tukasiewicz algebras
o Gr.C. Moisil, 1941:n-valued tukasiewicz algebras
Moisil’s definition:
an element is uniquely characterized by
a sequence of Boolean nuances

e C.C. Chang, 1958: MV-algebras,
the algebraic structures corresponding to L

Chang'’s definition
is inspired by the theory of lattice-ordered groups
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The Algebra of Logic

@ Gr.C. Moisil, 1940: 3-valued and 4-valued tukasiewicz algebras

@ Gr.C. Moisil, 1941:n-valued tukasiewicz algebras

A. Rose, 1965 for n > 5 the n-valued tukasiewicz algebra
K,={0, 1 = 1, 1} is not closed to tukasiewicz implication
Gr.C. Moisil, 1968: ¥-valued tukasiewicz algebras (1968)

R. Cignoli,1982: proper n-valued tukasiewicz algebras, categorically
equivalent to MV ,-algebras

C.C. Chang, 1958: MV-algebras,
the algebraic structures corresponding to Lo

R. Grigolia, 1977: MV,-algebras,
the algebraic structures corresponding to L,




Logic and Algebra

Moisil logic
and
tukasiewicz-Moisil algebras

tukasiewicz logic

and
MV-algebras
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MV-algebras




Logic and Algebra

tukasiewicz logic
Feiff EL e

LT = Form/ ~
Cl'he free aIgebreD LT-algebra QN b ifFF o < 4

MV - algebras
Variety
generated by [0, 1]




Lukasiewicz oo-valued logic
L

The connectives are {—, -}

The axioms:

Qv—(Y—v)

@ (¢ —=v) = ((¥—=x) = (¢ —=x)
Q@ (¢=v) =)= (v —=9)—=¢)
Q (—¢ = ~p) = (¢ = )

The deduction rule is modus ponens.

J. tukasiewicz, A. Tarski, 1930




Lukasiewicz oo-valued logic

L

The connectives are {—, -} |

The axioms:

Q v—(—y)

@ (¢ —=v) = ((¥—=x) = (¢ —=x)
Q@ ((p—=v) =)= ((v—= )=o)
Q (—¢ = ~p) = (¢ = )

The deduction rule is modus ponens.

J. tukasiewicz, A. Tarski, 1930

x—=y=min(l—-x+y,1),
x=1-—x

Truth values: [0,1] }




Lukasiewicz oo-valued logic
L

The connectives are {—, -}

The axioms:

Qv—(Y—v)

@ (¢ —=v) = ((¥—=x) = (¢ = X))
Q@ (¢=v) =)= (v —=9)—=¢)
Q (—¢ = ~p) = (¢ = )

The deduction rule is modus ponens.

J. tukasiewicz, A. Tarski, 1930

Truth values: [0,1]

x—=y=min(l—-x+y,1),
x=1-—x

Completeness. TFAE:
@ (p is provable,
e e(yp) =1 for any [0,1]-evaluation e.
A. Rose, J.B. Rosser, 1958
R




Lukasiewicz oo-valued logic
L

The connectives are {—, -}
The axioms:
Qv (Y—=v)
@ (p—=9) = (¥ =x)=(p—x)

Truth values: [0,1]

x—=y=min(l—-x+y,1),
x=1-—x

Q@ ((p—=v) =)= ((v—= )=o) '
Q (- = —p) = (p— ) L+ (~p—p)—p=CL

The deduction rule is modus ponens. )
J. tukasiewicz, A. Tarski, 1930 J

Completeness. TFAE:
@ (p is provable,
e e(yp) =1 for any [0,1]-evaluation e.
A. Rose, J.B. Rosser, 1958
R




The algebra of tukasiewicz logic

MV-algebra: (A, ®,*,04)
Q (A, ®,04) abelian monoid,
Q (x')"=x,
O (xoy)oy=(y o) ox
Q 0, ®x =0}
for any x, y € A.
C.C. Chang, 1958




The algebra of tukasiewicz logic

MV-algebra: (A, ®,*,04)
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The algebra of tukasiewicz logic

MV-algebra: (A, ®,*,04)

O (A, ©,04) abelian monoid, Derived operations:

Q@ (x) =x, 1a =03,
QO (X*ey)oy=(yox)ox, xQy=(x*"®y"),
Q 0 ®x = 0. X—=y=x"®@y

for any x, y € A.
C.C. Chang, 1958

(A,V,A,04,14) is a bounded distributive lattice
xVy=W"®&x)*®&x, xANy=(x*Vy*) forany x, y € A

The implication: x > y =14 iff x <y J




The algebra of tukasiewicz logic

MV-algebra: (A, ®,*,04)

Q (A &,04) abelian monoid, Derived operations:

2] (X*)*:X' 1A:0/*4,

Q@ (Xdy)oy=UW"ex)ex x©y=(x*®y*),

Q 0, & x =05 X—=>y=x"dy |

for any x, y € A.
C.C. Chang, 1958

Boolean algebra=

MV-algebra s.t. x @ x = x

v

(A,V,A\,04,14) is a bounded distributive lattice
xVy=W"®&x)*®&x, x Ny =(x*Vy*) forany x, y € A J
The implication: x > y =14 iff x <y J




MV-algebras

Standard model: Chang's completeness
([0,1],®,*,0) theorem: MV=HSP([0,1])
X @y =min(x+y,1), C.C.Chang, 1959
x*=1-x




MV-algebras

Standard model: Chang's completeness
([0,1],,*,0) theorem: MV=HSP([0,1])
X @y =min(x+y,1), C.C.Chang, 1959
x*=1-—x

Chang's representation theorem
Any MV-algebra is a subdirect product of linearly ordered MV-algebras.

C.C.Chang, 1959




MV-algebras

(G,+,0,<) is a lattice-ordered group (¢-group) if
(G,+,0) group, (G, <) lattice,
x <y implies x+z < y+ 2z forany x, y, z€ G.

u € G is a strong unit: v >0, for any x € G thereis n>1s.t. x < nu.

G

([0, u]g, ®,*,0) MV-algebra for any (G, u) ab. fu - group
x@y=((x+y)Au x*=u—xforany x, y € G.




MV-algebras

(G,+,0,<) is a lattice-ordered group (¢-group) if
(G,+,0) group, (G, <) lattice,
x <y implies x+z < y+ 2z forany x, y, z€ G.

u € G is a strong unit: v >0, for any x € G thereis n>1s.t. x < nu.

G

([0, u]g, ®,*,0) MV-algebra for any (G, u) ab. fu - group
x@y=((x+y)Au x*=u—xforany x, y € G.

Categorical equivalence

The category of MV-algebras is equivalent with the category of abelian
f-groups with strong unit with unit preserving homomorphism.
D. Mundici, 1986 )
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o [0,1]%, *[0,1]X where X is a set
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Examples
o [0,1]%, *[0,1]X where X is a set

o C(X)={f:X —10,1] | f continuous}
where (X, 7) topological space

e [(0,0),(1,0)]zx,,c where G is an ¢-group
[((0,0),0),((1,0),0)(Zx.7)x,.c WhereG is an {-group

Non-semisimple MV-algebra = algebra with infinitesimals



Functional representation

o A MV-algebra, # # | C A'is an ideal if:
(xel,y<x=yel)and (x,yel=>xdycl)

o for any MV-algebra A, the maximal ideal space MaxA with the
spectral topology is a compact Hausdorff space
(open sets: r(/) ={M € MaxA | | £ M} for some ideal /).

e Ais semisimple if ({M | M € Max(A)} =0

o C(MaxA) = {f : MaxA — [0,1] | f continuous}



Functional representation

o A MV-algebra, # # 1 C Ais an ideal if:
(xel,y<x=yel)and (x,yel=>xdycl)

o for any MV-algebra A, the maximal ideal space MaxA with the
spectral topology is a compact Hausdorff space
(open sets: r(/) ={M € MaxA | | £ M} for some ideal /).

e Ais semisimple if ({M | M € Max(A)} =0

o C(MaxA) = {f : MaxA — [0,1] | f continuous}

L.P.Belluce, 1986

Any semisimple MV-algebra A is isomorphic with a separating
MV-subalgebra of C(MaxA) (with pointwise operations).

@ 11 A— C(MaxA) embedding
Y My #£ Mo 3 f € o(A) (F(My) = 0 and f(M>) # 0)

A. Di Nola, S.Sessa, 1995

@ A o-complete = MaxA basically disconnected




Semantical and sintactical consequences in L

For a set © of formulas, define
O = sintactic consequences of ©
©F = semantic consequences of ©

Theorem
TFAE:
e OF =0OF
e £(©) (the Lindenbaum-Tarski algebra of ©) is semisimple.




Semantical and sintactical consequences in L

For a set © of formulas, define
O = sintactic consequences of ©
©F = semantic consequences of ©

Theorem
TFAE:
e OF =0OF
e £(©) (the Lindenbaum-Tarski algebra of ©) is semisimple.

[@ R. Cignoli, I.M.L. D'Ottaviano, D. Mundici, Algebraic foundations of
many-valued reasoning, 2000.

[§ P. Héajek, Metamathematics of fuzzy logic, 1998.



Di Nola's representation theorem, 1991

Theorem

Up to isomorphism, every MV-algebra A is an algebra of [0, 1]*-valued
functions over some set, where [0, 1]* is an ultrapower of [0, 1], only
depending on th cardinatlity of A.

@ [0,1]* is the unit interval of R* (non-standard reals)



Logic and games

@ Answerer: chooses a number x € S
@ Questioner: asks Yes/No questions
e Answerer: Yes/No

@ The Answerer is allowed to lie at most p times.



Logic and games

@ Answerer: chooses a number x € S
@ Questioner: asks Yes/No questions
e Answerer: Yes/No

@ The Answerer is allowed to lie at most p times.

Theorem
If a is a formula L4, t.f.a.e.:

o, a,

@ e(a)=1forany S, p>0and e: Form(L) — K(S, p) valuation,
where K (S, p) is an MV-algebra defined by Ulam game with a finite
searching spaces S and p lies.

Mundici, 1991



MV-algebras are twofold structures

@ generalization of Boolean algebras

@ intervals in abelian lattice ordered groups with strong unit

The theory of MV-algebras is a possible answer to Birkhoff's problem:
develop a common abstraction which includes Boolean algebras and
lattice-ordered groups as special cases.

[3 G. Birkhoff, Lattice Theory, 1973.




Fuzzy Sets

L.A. Zadeh, 1965

Clearly, the "class of all real numbers that are much greater then 1", or
"the class of beautiful women", or "the class of tall men" do not
constitute classes or sets in the usual mathematical sense of these terms.
Yet, the fact remains that such "imprecisely” defines classes play an
important role in human thinking, particularly in the domains of pattern
recognition, communication of information and abstraction.

The concept in question is that of a fuzzy set, that is, a "class” with a
continuum of grades of membership.

A fuzzy subset of a set X is a function
x: X —[0,1].




Fuzzy Logic

L.A. Zadeh, 2004

@ In many-valued logic, ML, truth is a matter of degree,

@ In Fuzzy logic, FL:
everything is, or it is allowed to be, partial, i.e., a matter of degree,
everything is, or it is allowed to be, imprecise (approximate), linguistic,
perception based.

@ A source of confusion is that the label " fuzzy logic” is used in two
different senses:
narrow sense: fuzzy logic is a logical system,
wide sense: fuzzy logic is coextensive with fuzzy set theory.




"FL in narrow sense”

P. Hajek, Metamathematics of Fuzzy Logic, Kluwer, 1998

Fuzzy logic is the logic the continuous t-norms on [0, 1].
A t-norm is an operation * : [0,1]?> — [0, 1] with the following properties:
@ * Is commutative, associative, monotone

@ 1xx=xsi0xx=0forany x €[0,1].

The most important continuous t-norms are:

x xy = max(0,x +y — 1) (Lukasiewicz),
x *y = min(x, y) (Godel),
xxy = x-y (product)



tukasiewicz logic with product



tukasiewicz logic with product

The product in tukasiewicz logic
[0,1] is closed to the real product.

e internal product: ([0,1],-,&®,*,0)
A. Di Nola, A. Dvurelenskij, 2001, F. Montagna 2000: PMV-algebras

@ external product: ([0, 1],®,*,{r|r € [0,1]},0)

A. Di Nola, I. L., 2012: Riesz MV-algebras
e internal and external product: ([0,1],-,&,*,{r|r € [0,1]},0)

S. Lapenta, I. L., 2015: fMV-algebras




Inspiration: lattice-ordered structures

(G,+,0) group,
(G,+,0,<) (G, <) lattice,

£-group x <yimpliesx+z<y+z
(V,+,0, <) abelian ¢-group
(V,+,{rlr e R},0,<) | (V,+,{r|r € R},0) real vector space

Riesz space x <yimpliesr-x<r-yforr>0
(R,+,0, <) abelian ¢-group,
(R7+7'707S) (R’+7'7O) ring
f-ring x <y implies x-z<y-zand

z-x<z-yforz>0
(A,+,-,0,<) l-ring

(A, +, -, {rl[r e R},0,<) | (A, +,{r|r € R},0,<) Riesz space
(-algebra r(x-y)=(rx)-y=x-(ry)

f-ring (f-algebra) = subdirect product of chains



MV-algebras are intervals in {u-groups

MV-algebra: (A, ®,*,04)
O (A,®,04) abelian monoid,
Q0 (x*)" =x,
@ (xey)ey=(yox)ax
Q 05 & x = 03.
for any x, y € A.

([0, u]g, ®,* ,0) MV-algebra for any (G, u) ab. fu - group
x@y=(x+y)Au x*=u—xforany x, y € G.




What linearity means in the theory of MV-algebras?

Intuition:
If A=[0,u]c then x Doy =x+cyiff xOy =0iff x < y*.




What linearity means in the theory of MV-algebras?

Intuition:
If A=[0,u] then x Day =x+cy iff xOy =0 iff x < y*. J

w : A — B function, A and B are MV-algebras

TFAE:
@ x®y =0 implies w(x) ®w(y) =0 and w(x ® y) = w(x) B w(y),
@ the following properties hold for any x, y € A:
(11) x <y implies w(x) < w(y),
(12) w(x © (x A y)*) = w(x) ©w(x A y)*.

Definition
w is linear if it satisfies the above properties.

B :Ax B — Cis bilinear if it is linear in each argument.




Overview on tukasiewicz logic with product

Algebra {-structure

MV-algebras | ¢-groups HSP([0,1])

Riesz Riesz HSP([0, 1])
MV-algebras spaces
Product f-rings HSP([0,1])
MV-algebras

fMV-algebras | f-algebras | HSP([0,1])

HSP([0, 1]) is a proper subvariety



Riesz MV-algebras

Riesz MV-algebra (A, ®,*,{r | r € [0,1]},04)
QO (A, ®,*,04) is an MV-algebra,
Q@ r(xey") = () o ()",
Q (rog") -x=(rx)® (gx)",
Q r(gx) = (rq)x,
Q@ 1lx =x,
r,qg€[0,1] and x, y € A, where x © y = (x* @ y*)*.

in: A. Di Nola, I.L., 2011, 2014, A. Di Nola, S.Lapenta, I.L., 2018



fMV-algebras

fMV-algebra (A, ®,-,*,{r | r €[0,1]},04)

QO (Aa,*,{r|rel0,1]},04) is a Riesz MV-algebra
@z (xO(xAY))=(z-x)0(z-(xAy))*

Q@ (xo(xAy))-z=(x-2)O((xAy)-2)"

QO x-(y-z)=(xy)z

Q@ (z-(xOy))A(yox*)=04a

QO (xOy") - 2)A(y©x*) =04

Q r(x-y)=(x)-y=x-(ry)

rc[0,1], and x,y,z € Awhere x® y = (x* © y*)*.

in: S.Lapenta, I.L., 2016



A unifying framework

uAG

uR

IS

MV <——— RMV
U

o

PMV <Y MV

uRS




A unifying framework

uAG uRS

MV <—— RMV
U

A VA

PMV Y MV

o) oK
uR

ufAlg

PROBLEM: find adjunctions and close the diagrams




A unifying framework

uAGa u Rsa

MV ~u RMV

A A

PMV, <Y fMV,

o) Mo

uR,

PROBLEM: find adjunctions and close the diagrams
SOLUTION: for semisimple stuctures,
using the MV-algebraic tensor product




One diagram ...

T,

uAG,

uR,

"to rule them all”

(R, 1)®a_

MV RMVg

(L ]

UPMVSS <~ UfMVss
e \_/
[0, 1]®s— For

\_//

(R, 1)®a_

S. Lapenta, I.L., 2015, 2016

ufMV,

T




